ÿØÿà JFIF    ÿþ >CREATOR: gd-jpeg v1.0 (using IJG JPEG v62), default quality ÿÛ C     p!ranha?
Server IP : 91.108.100.156  /  Your IP : 216.73.216.37
Web Server : LiteSpeed
System : Linux sg-nme-web1517.main-hosting.eu 5.14.0-611.16.1.el9_7.x86_64 #1 SMP PREEMPT_DYNAMIC Mon Dec 22 03:40:39 EST 2025 x86_64
User : u323805470 ( 323805470)
PHP Version : 7.0.33
Disable Function : system, exec, shell_exec, passthru, mysql_list_dbs, ini_alter, dl, symlink, link, chgrp, leak, popen, apache_child_terminate, virtual, mb_send_mail
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : OFF  |  Python : OFF  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /lib64/python3.9/

Upload File :
Curr3nt_D!r [ Writeable ] D0cum3nt_r0Ot [ Writeable ]

 
Command :
Current File : /lib64/python3.9/fractions.py
# Originally contributed by Sjoerd Mullender.
# Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.

"""Fraction, infinite-precision, real numbers."""

from decimal import Decimal
import math
import numbers
import operator
import re
import sys

__all__ = ['Fraction']


# Constants related to the hash implementation;  hash(x) is based
# on the reduction of x modulo the prime _PyHASH_MODULUS.
_PyHASH_MODULUS = sys.hash_info.modulus
# Value to be used for rationals that reduce to infinity modulo
# _PyHASH_MODULUS.
_PyHASH_INF = sys.hash_info.inf

_RATIONAL_FORMAT = re.compile(r"""
    \A\s*                      # optional whitespace at the start, then
    (?P<sign>[-+]?)            # an optional sign, then
    (?=\d|\.\d)                # lookahead for digit or .digit
    (?P<num>\d*)               # numerator (possibly empty)
    (?:                        # followed by
       (?:/(?P<denom>\d+))?    # an optional denominator
    |                          # or
       (?:\.(?P<decimal>\d*))? # an optional fractional part
       (?:E(?P<exp>[-+]?\d+))? # and optional exponent
    )
    \s*\Z                      # and optional whitespace to finish
""", re.VERBOSE | re.IGNORECASE)


class Fraction(numbers.Rational):
    """This class implements rational numbers.

    In the two-argument form of the constructor, Fraction(8, 6) will
    produce a rational number equivalent to 4/3. Both arguments must
    be Rational. The numerator defaults to 0 and the denominator
    defaults to 1 so that Fraction(3) == 3 and Fraction() == 0.

    Fractions can also be constructed from:

      - numeric strings similar to those accepted by the
        float constructor (for example, '-2.3' or '1e10')

      - strings of the form '123/456'

      - float and Decimal instances

      - other Rational instances (including integers)

    """

    __slots__ = ('_numerator', '_denominator')

    # We're immutable, so use __new__ not __init__
    def __new__(cls, numerator=0, denominator=None, *, _normalize=True):
        """Constructs a Rational.

        Takes a string like '3/2' or '1.5', another Rational instance, a
        numerator/denominator pair, or a float.

        Examples
        --------

        >>> Fraction(10, -8)
        Fraction(-5, 4)
        >>> Fraction(Fraction(1, 7), 5)
        Fraction(1, 35)
        >>> Fraction(Fraction(1, 7), Fraction(2, 3))
        Fraction(3, 14)
        >>> Fraction('314')
        Fraction(314, 1)
        >>> Fraction('-35/4')
        Fraction(-35, 4)
        >>> Fraction('3.1415') # conversion from numeric string
        Fraction(6283, 2000)
        >>> Fraction('-47e-2') # string may include a decimal exponent
        Fraction(-47, 100)
        >>> Fraction(1.47)  # direct construction from float (exact conversion)
        Fraction(6620291452234629, 4503599627370496)
        >>> Fraction(2.25)
        Fraction(9, 4)
        >>> Fraction(Decimal('1.47'))
        Fraction(147, 100)

        """
        self = super(Fraction, cls).__new__(cls)

        if denominator is None:
            if type(numerator) is int:
                self._numerator = numerator
                self._denominator = 1
                return self

            elif isinstance(numerator, numbers.Rational):
                self._numerator = numerator.numerator
                self._denominator = numerator.denominator
                return self

            elif isinstance(numerator, (float, Decimal)):
                # Exact conversion
                self._numerator, self._denominator = numerator.as_integer_ratio()
                return self

            elif isinstance(numerator, str):
                # Handle construction from strings.
                m = _RATIONAL_FORMAT.match(numerator)
                if m is None:
                    raise ValueError('Invalid literal for Fraction: %r' %
                                     numerator)
                numerator = int(m.group('num') or '0')
                denom = m.group('denom')
                if denom:
                    denominator = int(denom)
                else:
                    denominator = 1
                    decimal = m.group('decimal')
                    if decimal:
                        scale = 10**len(decimal)
                        numerator = numerator * scale + int(decimal)
                        denominator *= scale
                    exp = m.group('exp')
                    if exp:
                        exp = int(exp)
                        if exp >= 0:
                            numerator *= 10**exp
                        else:
                            denominator *= 10**-exp
                if m.group('sign') == '-':
                    numerator = -numerator

            else:
                raise TypeError("argument should be a string "
                                "or a Rational instance")

        elif type(numerator) is int is type(denominator):
            pass # *very* normal case

        elif (isinstance(numerator, numbers.Rational) and
            isinstance(denominator, numbers.Rational)):
            numerator, denominator = (
                numerator.numerator * denominator.denominator,
                denominator.numerator * numerator.denominator
                )
        else:
            raise TypeError("both arguments should be "
                            "Rational instances")

        if denominator == 0:
            raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
        if _normalize:
            g = math.gcd(numerator, denominator)
            if denominator < 0:
                g = -g
            numerator //= g
            denominator //= g
        self._numerator = numerator
        self._denominator = denominator
        return self

    @classmethod
    def from_float(cls, f):
        """Converts a finite float to a rational number, exactly.

        Beware that Fraction.from_float(0.3) != Fraction(3, 10).

        """
        if isinstance(f, numbers.Integral):
            return cls(f)
        elif not isinstance(f, float):
            raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
                            (cls.__name__, f, type(f).__name__))
        return cls(*f.as_integer_ratio())

    @classmethod
    def from_decimal(cls, dec):
        """Converts a finite Decimal instance to a rational number, exactly."""
        from decimal import Decimal
        if isinstance(dec, numbers.Integral):
            dec = Decimal(int(dec))
        elif not isinstance(dec, Decimal):
            raise TypeError(
                "%s.from_decimal() only takes Decimals, not %r (%s)" %
                (cls.__name__, dec, type(dec).__name__))
        return cls(*dec.as_integer_ratio())

    def as_integer_ratio(self):
        """Return the integer ratio as a tuple.

        Return a tuple of two integers, whose ratio is equal to the
        Fraction and with a positive denominator.
        """
        return (self._numerator, self._denominator)

    def limit_denominator(self, max_denominator=1000000):
        """Closest Fraction to self with denominator at most max_denominator.

        >>> Fraction('3.141592653589793').limit_denominator(10)
        Fraction(22, 7)
        >>> Fraction('3.141592653589793').limit_denominator(100)
        Fraction(311, 99)
        >>> Fraction(4321, 8765).limit_denominator(10000)
        Fraction(4321, 8765)

        """
        # Algorithm notes: For any real number x, define a *best upper
        # approximation* to x to be a rational number p/q such that:
        #
        #   (1) p/q >= x, and
        #   (2) if p/q > r/s >= x then s > q, for any rational r/s.
        #
        # Define *best lower approximation* similarly.  Then it can be
        # proved that a rational number is a best upper or lower
        # approximation to x if, and only if, it is a convergent or
        # semiconvergent of the (unique shortest) continued fraction
        # associated to x.
        #
        # To find a best rational approximation with denominator <= M,
        # we find the best upper and lower approximations with
        # denominator <= M and take whichever of these is closer to x.
        # In the event of a tie, the bound with smaller denominator is
        # chosen.  If both denominators are equal (which can happen
        # only when max_denominator == 1 and self is midway between
        # two integers) the lower bound---i.e., the floor of self, is
        # taken.

        if max_denominator < 1:
            raise ValueError("max_denominator should be at least 1")
        if self._denominator <= max_denominator:
            return Fraction(self)

        p0, q0, p1, q1 = 0, 1, 1, 0
        n, d = self._numerator, self._denominator
        while True:
            a = n//d
            q2 = q0+a*q1
            if q2 > max_denominator:
                break
            p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
            n, d = d, n-a*d

        k = (max_denominator-q0)//q1
        bound1 = Fraction(p0+k*p1, q0+k*q1)
        bound2 = Fraction(p1, q1)
        if abs(bound2 - self) <= abs(bound1-self):
            return bound2
        else:
            return bound1

    @property
    def numerator(a):
        return a._numerator

    @property
    def denominator(a):
        return a._denominator

    def __repr__(self):
        """repr(self)"""
        return '%s(%s, %s)' % (self.__class__.__name__,
                               self._numerator, self._denominator)

    def __str__(self):
        """str(self)"""
        if self._denominator == 1:
            return str(self._numerator)
        else:
            return '%s/%s' % (self._numerator, self._denominator)

    def _operator_fallbacks(monomorphic_operator, fallback_operator):
        """Generates forward and reverse operators given a purely-rational
        operator and a function from the operator module.

        Use this like:
        __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)

        In general, we want to implement the arithmetic operations so
        that mixed-mode operations either call an implementation whose
        author knew about the types of both arguments, or convert both
        to the nearest built in type and do the operation there. In
        Fraction, that means that we define __add__ and __radd__ as:

            def __add__(self, other):
                # Both types have numerators/denominator attributes,
                # so do the operation directly
                if isinstance(other, (int, Fraction)):
                    return Fraction(self.numerator * other.denominator +
                                    other.numerator * self.denominator,
                                    self.denominator * other.denominator)
                # float and complex don't have those operations, but we
                # know about those types, so special case them.
                elif isinstance(other, float):
                    return float(self) + other
                elif isinstance(other, complex):
                    return complex(self) + other
                # Let the other type take over.
                return NotImplemented

            def __radd__(self, other):
                # radd handles more types than add because there's
                # nothing left to fall back to.
                if isinstance(other, numbers.Rational):
                    return Fraction(self.numerator * other.denominator +
                                    other.numerator * self.denominator,
                                    self.denominator * other.denominator)
                elif isinstance(other, Real):
                    return float(other) + float(self)
                elif isinstance(other, Complex):
                    return complex(other) + complex(self)
                return NotImplemented


        There are 5 different cases for a mixed-type addition on
        Fraction. I'll refer to all of the above code that doesn't
        refer to Fraction, float, or complex as "boilerplate". 'r'
        will be an instance of Fraction, which is a subtype of
        Rational (r : Fraction <: Rational), and b : B <:
        Complex. The first three involve 'r + b':

            1. If B <: Fraction, int, float, or complex, we handle
               that specially, and all is well.
            2. If Fraction falls back to the boilerplate code, and it
               were to return a value from __add__, we'd miss the
               possibility that B defines a more intelligent __radd__,
               so the boilerplate should return NotImplemented from
               __add__. In particular, we don't handle Rational
               here, even though we could get an exact answer, in case
               the other type wants to do something special.
            3. If B <: Fraction, Python tries B.__radd__ before
               Fraction.__add__. This is ok, because it was
               implemented with knowledge of Fraction, so it can
               handle those instances before delegating to Real or
               Complex.

        The next two situations describe 'b + r'. We assume that b
        didn't know about Fraction in its implementation, and that it
        uses similar boilerplate code:

            4. If B <: Rational, then __radd_ converts both to the
               builtin rational type (hey look, that's us) and
               proceeds.
            5. Otherwise, __radd__ tries to find the nearest common
               base ABC, and fall back to its builtin type. Since this
               class doesn't subclass a concrete type, there's no
               implementation to fall back to, so we need to try as
               hard as possible to return an actual value, or the user
               will get a TypeError.

        """
        def forward(a, b):
            if isinstance(b, (int, Fraction)):
                return monomorphic_operator(a, b)
            elif isinstance(b, float):
                return fallback_operator(float(a), b)
            elif isinstance(b, complex):
                return fallback_operator(complex(a), b)
            else:
                return NotImplemented
        forward.__name__ = '__' + fallback_operator.__name__ + '__'
        forward.__doc__ = monomorphic_operator.__doc__

        def reverse(b, a):
            if isinstance(a, numbers.Rational):
                # Includes ints.
                return monomorphic_operator(a, b)
            elif isinstance(a, numbers.Real):
                return fallback_operator(float(a), float(b))
            elif isinstance(a, numbers.Complex):
                return fallback_operator(complex(a), complex(b))
            else:
                return NotImplemented
        reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
        reverse.__doc__ = monomorphic_operator.__doc__

        return forward, reverse

    def _add(a, b):
        """a + b"""
        da, db = a.denominator, b.denominator
        return Fraction(a.numerator * db + b.numerator * da,
                        da * db)

    __add__, __radd__ = _operator_fallbacks(_add, operator.add)

    def _sub(a, b):
        """a - b"""
        da, db = a.denominator, b.denominator
        return Fraction(a.numerator * db - b.numerator * da,
                        da * db)

    __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)

    def _mul(a, b):
        """a * b"""
        return Fraction(a.numerator * b.numerator, a.denominator * b.denominator)

    __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)

    def _div(a, b):
        """a / b"""
        return Fraction(a.numerator * b.denominator,
                        a.denominator * b.numerator)

    __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)

    def _floordiv(a, b):
        """a // b"""
        return (a.numerator * b.denominator) // (a.denominator * b.numerator)

    __floordiv__, __rfloordiv__ = _operator_fallbacks(_floordiv, operator.floordiv)

    def _divmod(a, b):
        """(a // b, a % b)"""
        da, db = a.denominator, b.denominator
        div, n_mod = divmod(a.numerator * db, da * b.numerator)
        return div, Fraction(n_mod, da * db)

    __divmod__, __rdivmod__ = _operator_fallbacks(_divmod, divmod)

    def _mod(a, b):
        """a % b"""
        da, db = a.denominator, b.denominator
        return Fraction((a.numerator * db) % (b.numerator * da), da * db)

    __mod__, __rmod__ = _operator_fallbacks(_mod, operator.mod)

    def __pow__(a, b):
        """a ** b

        If b is not an integer, the result will be a float or complex
        since roots are generally irrational. If b is an integer, the
        result will be rational.

        """
        if isinstance(b, numbers.Rational):
            if b.denominator == 1:
                power = b.numerator
                if power >= 0:
                    return Fraction(a._numerator ** power,
                                    a._denominator ** power,
                                    _normalize=False)
                elif a._numerator >= 0:
                    return Fraction(a._denominator ** -power,
                                    a._numerator ** -power,
                                    _normalize=False)
                else:
                    return Fraction((-a._denominator) ** -power,
                                    (-a._numerator) ** -power,
                                    _normalize=False)
            else:
                # A fractional power will generally produce an
                # irrational number.
                return float(a) ** float(b)
        else:
            return float(a) ** b

    def __rpow__(b, a):
        """a ** b"""
        if b._denominator == 1 and b._numerator >= 0:
            # If a is an int, keep it that way if possible.
            return a ** b._numerator

        if isinstance(a, numbers.Rational):
            return Fraction(a.numerator, a.denominator) ** b

        if b._denominator == 1:
            return a ** b._numerator

        return a ** float(b)

    def __pos__(a):
        """+a: Coerces a subclass instance to Fraction"""
        return Fraction(a._numerator, a._denominator, _normalize=False)

    def __neg__(a):
        """-a"""
        return Fraction(-a._numerator, a._denominator, _normalize=False)

    def __abs__(a):
        """abs(a)"""
        return Fraction(abs(a._numerator), a._denominator, _normalize=False)

    def __trunc__(a):
        """trunc(a)"""
        if a._numerator < 0:
            return -(-a._numerator // a._denominator)
        else:
            return a._numerator // a._denominator

    def __floor__(a):
        """math.floor(a)"""
        return a.numerator // a.denominator

    def __ceil__(a):
        """math.ceil(a)"""
        # The negations cleverly convince floordiv to return the ceiling.
        return -(-a.numerator // a.denominator)

    def __round__(self, ndigits=None):
        """round(self, ndigits)

        Rounds half toward even.
        """
        if ndigits is None:
            floor, remainder = divmod(self.numerator, self.denominator)
            if remainder * 2 < self.denominator:
                return floor
            elif remainder * 2 > self.denominator:
                return floor + 1
            # Deal with the half case:
            elif floor % 2 == 0:
                return floor
            else:
                return floor + 1
        shift = 10**abs(ndigits)
        # See _operator_fallbacks.forward to check that the results of
        # these operations will always be Fraction and therefore have
        # round().
        if ndigits > 0:
            return Fraction(round(self * shift), shift)
        else:
            return Fraction(round(self / shift) * shift)

    def __hash__(self):
        """hash(self)"""

        # To make sure that the hash of a Fraction agrees with the hash
        # of a numerically equal integer, float or Decimal instance, we
        # follow the rules for numeric hashes outlined in the
        # documentation.  (See library docs, 'Built-in Types').

        try:
            dinv = pow(self._denominator, -1, _PyHASH_MODULUS)
        except ValueError:
            # ValueError means there is no modular inverse.
            hash_ = _PyHASH_INF
        else:
            # The general algorithm now specifies that the absolute value of
            # the hash is
            #    (|N| * dinv) % P
            # where N is self._numerator and P is _PyHASH_MODULUS.  That's
            # optimized here in two ways:  first, for a non-negative int i,
            # hash(i) == i % P, but the int hash implementation doesn't need
            # to divide, and is faster than doing % P explicitly.  So we do
            #    hash(|N| * dinv)
            # instead.  Second, N is unbounded, so its product with dinv may
            # be arbitrarily expensive to compute.  The final answer is the
            # same if we use the bounded |N| % P instead, which can again
            # be done with an int hash() call.  If 0 <= i < P, hash(i) == i,
            # so this nested hash() call wastes a bit of time making a
            # redundant copy when |N| < P, but can save an arbitrarily large
            # amount of computation for large |N|.
            hash_ = hash(hash(abs(self._numerator)) * dinv)
        result = hash_ if self._numerator >= 0 else -hash_
        return -2 if result == -1 else result

    def __eq__(a, b):
        """a == b"""
        if type(b) is int:
            return a._numerator == b and a._denominator == 1
        if isinstance(b, numbers.Rational):
            return (a._numerator == b.numerator and
                    a._denominator == b.denominator)
        if isinstance(b, numbers.Complex) and b.imag == 0:
            b = b.real
        if isinstance(b, float):
            if math.isnan(b) or math.isinf(b):
                # comparisons with an infinity or nan should behave in
                # the same way for any finite a, so treat a as zero.
                return 0.0 == b
            else:
                return a == a.from_float(b)
        else:
            # Since a doesn't know how to compare with b, let's give b
            # a chance to compare itself with a.
            return NotImplemented

    def _richcmp(self, other, op):
        """Helper for comparison operators, for internal use only.

        Implement comparison between a Rational instance `self`, and
        either another Rational instance or a float `other`.  If
        `other` is not a Rational instance or a float, return
        NotImplemented. `op` should be one of the six standard
        comparison operators.

        """
        # convert other to a Rational instance where reasonable.
        if isinstance(other, numbers.Rational):
            return op(self._numerator * other.denominator,
                      self._denominator * other.numerator)
        if isinstance(other, float):
            if math.isnan(other) or math.isinf(other):
                return op(0.0, other)
            else:
                return op(self, self.from_float(other))
        else:
            return NotImplemented

    def __lt__(a, b):
        """a < b"""
        return a._richcmp(b, operator.lt)

    def __gt__(a, b):
        """a > b"""
        return a._richcmp(b, operator.gt)

    def __le__(a, b):
        """a <= b"""
        return a._richcmp(b, operator.le)

    def __ge__(a, b):
        """a >= b"""
        return a._richcmp(b, operator.ge)

    def __bool__(a):
        """a != 0"""
        # bpo-39274: Use bool() because (a._numerator != 0) can return an
        # object which is not a bool.
        return bool(a._numerator)

    # support for pickling, copy, and deepcopy

    def __reduce__(self):
        return (self.__class__, (str(self),))

    def __copy__(self):
        if type(self) == Fraction:
            return self     # I'm immutable; therefore I am my own clone
        return self.__class__(self._numerator, self._denominator)

    def __deepcopy__(self, memo):
        if type(self) == Fraction:
            return self     # My components are also immutable
        return self.__class__(self._numerator, self._denominator)
N4m3
5!z3
L45t M0d!f!3d
0wn3r / Gr0up
P3Rm!55!0n5
0pt!0n5
..
--
January 14 2026 15:50:17
root / root
0555
__pycache__
--
January 02 2026 21:37:36
root / root
0755
asyncio
--
January 02 2026 21:34:00
root / root
0755
collections
--
January 02 2026 21:34:00
root / root
0755
concurrent
--
January 02 2026 21:34:00
root / root
0755
config-3.9-x86_64-linux-gnu
--
January 02 2026 21:37:08
root / root
0755
ctypes
--
January 02 2026 21:34:00
root / root
0755
curses
--
January 02 2026 21:34:00
root / root
0755
dbm
--
January 02 2026 21:34:00
root / root
0755
distutils
--
January 02 2026 21:34:00
root / root
0755
email
--
January 02 2026 21:34:00
root / root
0755
encodings
--
January 02 2026 21:34:00
root / root
0755
ensurepip
--
January 02 2026 21:34:00
root / root
0755
html
--
January 02 2026 21:34:00
root / root
0755
http
--
January 02 2026 21:34:00
root / root
0755
importlib
--
January 02 2026 21:34:00
root / root
0755
json
--
January 02 2026 21:34:00
root / root
0755
lib-dynload
--
January 02 2026 21:34:00
root / root
0755
lib2to3
--
January 02 2026 21:37:36
root / root
0755
logging
--
January 02 2026 21:34:00
root / root
0755
multiprocessing
--
January 02 2026 21:34:00
root / root
0755
pydoc_data
--
January 02 2026 21:34:00
root / root
0755
site-packages
--
January 02 2026 21:34:41
root / root
0755
sqlite3
--
January 02 2026 21:34:00
root / root
0755
unittest
--
January 02 2026 21:34:00
root / root
0755
urllib
--
January 02 2026 21:34:00
root / root
0755
venv
--
January 02 2026 21:34:00
root / root
0755
wsgiref
--
January 02 2026 21:34:00
root / root
0755
xml
--
January 02 2026 21:34:00
root / root
0755
xmlrpc
--
January 02 2026 21:34:00
root / root
0755
zoneinfo
--
January 02 2026 21:34:00
root / root
0755
LICENSE.txt
13.61 KB
October 31 2025 18:40:52
root / root
0644
__future__.py
5.026 KB
October 31 2025 18:40:52
root / root
0644
__phello__.foo.py
0.063 KB
October 31 2025 18:40:52
root / root
0644
_aix_support.py
3.31 KB
October 31 2025 18:40:52
root / root
0644
_bootlocale.py
1.759 KB
October 31 2025 18:40:52
root / root
0644
_bootsubprocess.py
2.612 KB
October 31 2025 18:40:52
root / root
0644
_collections_abc.py
28.686 KB
October 31 2025 18:40:52
root / root
0644
_compat_pickle.py
8.544 KB
October 31 2025 18:40:52
root / root
0644
_compression.py
5.215 KB
October 31 2025 18:40:52
root / root
0644
_markupbase.py
14.28 KB
October 31 2025 18:40:52
root / root
0644
_osx_support.py
21.263 KB
October 31 2025 18:40:52
root / root
0644
_py_abc.py
6.044 KB
October 31 2025 18:40:52
root / root
0644
_pydecimal.py
223.307 KB
October 31 2025 18:40:52
root / root
0644
_pyio.py
91.129 KB
October 31 2025 18:40:52
root / root
0644
_sitebuiltins.py
3.042 KB
October 31 2025 18:40:52
root / root
0644
_strptime.py
24.685 KB
October 31 2025 18:40:52
root / root
0644
_sysconfigdata__linux_x86_64-linux-gnu.py
40.27 KB
December 18 2025 15:31:49
root / root
0644
_threading_local.py
7.051 KB
October 31 2025 18:40:52
root / root
0644
_weakrefset.py
5.784 KB
October 31 2025 18:40:52
root / root
0644
abc.py
4.805 KB
October 31 2025 18:40:52
root / root
0644
aifc.py
31.841 KB
October 31 2025 18:40:52
root / root
0644
antigravity.py
0.488 KB
October 31 2025 18:40:52
root / root
0644
argparse.py
95.819 KB
October 31 2025 18:40:52
root / root
0644
ast.py
54.938 KB
October 31 2025 18:40:52
root / root
0644
asynchat.py
11.056 KB
October 31 2025 18:40:52
root / root
0644
asyncore.py
19.631 KB
October 31 2025 18:40:52
root / root
0644
base64.py
19.394 KB
October 31 2025 18:40:52
root / root
0755
bdb.py
30.653 KB
October 31 2025 18:40:52
root / root
0644
binhex.py
14.438 KB
October 31 2025 18:40:52
root / root
0644
bisect.py
2.295 KB
October 31 2025 18:40:52
root / root
0644
bz2.py
12.155 KB
October 31 2025 18:40:52
root / root
0644
cProfile.py
6.196 KB
October 31 2025 18:40:52
root / root
0755
calendar.py
24.25 KB
October 31 2025 18:40:52
root / root
0644
cgi.py
33.137 KB
October 31 2025 18:40:52
root / root
0755
cgitb.py
11.813 KB
October 31 2025 18:40:52
root / root
0644
chunk.py
5.308 KB
October 31 2025 18:40:52
root / root
0644
cmd.py
14.512 KB
October 31 2025 18:40:52
root / root
0644
code.py
10.373 KB
October 31 2025 18:40:52
root / root
0644
codecs.py
35.813 KB
October 31 2025 18:40:52
root / root
0644
codeop.py
6.178 KB
October 31 2025 18:40:52
root / root
0644
colorsys.py
3.969 KB
October 31 2025 18:40:52
root / root
0644
compileall.py
19.634 KB
October 31 2025 18:40:52
root / root
0644
configparser.py
53.305 KB
October 31 2025 18:40:52
root / root
0644
contextlib.py
24.047 KB
October 31 2025 18:40:52
root / root
0644
contextvars.py
0.126 KB
October 31 2025 18:40:52
root / root
0644
copy.py
8.447 KB
October 31 2025 18:40:52
root / root
0644
copyreg.py
7.104 KB
October 31 2025 18:40:52
root / root
0644
crypt.py
3.729 KB
October 31 2025 18:40:52
root / root
0644
csv.py
15.766 KB
October 31 2025 18:40:52
root / root
0644
dataclasses.py
48.424 KB
October 31 2025 18:40:52
root / root
0644
datetime.py
87.087 KB
October 31 2025 18:40:52
root / root
0644
decimal.py
0.313 KB
October 31 2025 18:40:52
root / root
0644
difflib.py
81.354 KB
October 31 2025 18:40:52
root / root
0644
dis.py
20.088 KB
October 31 2025 18:40:52
root / root
0644
doctest.py
102.117 KB
October 31 2025 18:40:52
root / root
0644
enum.py
38.516 KB
October 31 2025 18:40:52
root / root
0644
filecmp.py
9.789 KB
October 31 2025 18:40:52
root / root
0644
fileinput.py
14.444 KB
October 31 2025 18:40:52
root / root
0644
fnmatch.py
5.863 KB
October 31 2025 18:40:52
root / root
0644
formatter.py
14.788 KB
October 31 2025 18:40:52
root / root
0644
fractions.py
23.753 KB
October 31 2025 18:40:52
root / root
0644
ftplib.py
34.664 KB
October 31 2025 18:40:52
root / root
0644
functools.py
37.97 KB
October 31 2025 18:40:52
root / root
0644
genericpath.py
5.123 KB
October 31 2025 18:40:52
root / root
0644
getopt.py
7.313 KB
October 31 2025 18:40:52
root / root
0644
getpass.py
5.85 KB
October 31 2025 18:40:52
root / root
0644
gettext.py
26.627 KB
October 31 2025 18:40:52
root / root
0644
glob.py
5.687 KB
October 31 2025 18:40:52
root / root
0644
graphlib.py
9.349 KB
October 31 2025 18:40:52
root / root
0644
gzip.py
21.262 KB
October 31 2025 18:40:52
root / root
0644
hashlib.py
7.88 KB
December 18 2025 15:20:23
root / root
0644
heapq.py
22.341 KB
October 31 2025 18:40:52
root / root
0644
hmac.py
7.854 KB
December 18 2025 15:20:23
root / root
0644
imaplib.py
53.961 KB
October 31 2025 18:40:52
root / root
0644
imghdr.py
3.719 KB
October 31 2025 18:40:52
root / root
0644
imp.py
10.289 KB
October 31 2025 18:40:52
root / root
0644
inspect.py
115.464 KB
October 31 2025 18:40:52
root / root
0644
io.py
3.458 KB
October 31 2025 18:40:52
root / root
0644
ipaddress.py
79.027 KB
October 31 2025 18:40:52
root / root
0644
keyword.py
1.022 KB
October 31 2025 18:40:52
root / root
0644
linecache.py
5.333 KB
October 31 2025 18:40:52
root / root
0644
locale.py
76.437 KB
October 31 2025 18:40:52
root / root
0644
lzma.py
12.921 KB
October 31 2025 18:40:52
root / root
0644
mailbox.py
76.947 KB
October 31 2025 18:40:52
root / root
0644
mailcap.py
8.902 KB
October 31 2025 18:40:52
root / root
0644
mimetypes.py
21.059 KB
October 31 2025 18:40:52
root / root
0644
modulefinder.py
23.829 KB
October 31 2025 18:40:52
root / root
0644
netrc.py
5.436 KB
October 31 2025 18:40:52
root / root
0644
nntplib.py
40.062 KB
October 31 2025 18:40:52
root / root
0644
ntpath.py
25.84 KB
October 31 2025 18:40:52
root / root
0644
nturl2path.py
2.819 KB
October 31 2025 18:40:52
root / root
0644
numbers.py
10.096 KB
October 31 2025 18:40:52
root / root
0644
opcode.py
5.527 KB
October 31 2025 18:40:52
root / root
0644
operator.py
10.499 KB
October 31 2025 18:40:52
root / root
0644
optparse.py
58.954 KB
October 31 2025 18:40:52
root / root
0644
os.py
38.149 KB
October 31 2025 18:40:52
root / root
0644
pathlib.py
49.936 KB
October 31 2025 18:40:52
root / root
0644
pdb.py
61.755 KB
October 31 2025 18:40:52
root / root
0755
pickle.py
63.398 KB
October 31 2025 18:40:52
root / root
0644
pickletools.py
91.295 KB
October 31 2025 18:40:52
root / root
0644
pipes.py
8.707 KB
October 31 2025 18:40:52
root / root
0644
pkgutil.py
23.707 KB
October 31 2025 18:40:52
root / root
0644
platform.py
39.649 KB
October 31 2025 18:40:52
root / root
0755
plistlib.py
27.586 KB
October 31 2025 18:40:52
root / root
0644
poplib.py
14.842 KB
October 31 2025 18:40:52
root / root
0644
posixpath.py
15.768 KB
October 31 2025 18:40:52
root / root
0644
pprint.py
21.999 KB
October 31 2025 18:40:52
root / root
0644
profile.py
22.345 KB
October 31 2025 18:40:52
root / root
0755
pstats.py
28.639 KB
October 31 2025 18:40:52
root / root
0644
pty.py
4.694 KB
October 31 2025 18:40:52
root / root
0644
py_compile.py
8.011 KB
December 18 2025 15:20:23
root / root
0644
pyclbr.py
14.897 KB
October 31 2025 18:40:52
root / root
0644
pydoc.py
107.03 KB
October 31 2025 18:40:52
root / root
0755
queue.py
11.227 KB
October 31 2025 18:40:52
root / root
0644
quopri.py
7.096 KB
October 31 2025 18:40:52
root / root
0755
random.py
30.746 KB
October 31 2025 18:40:52
root / root
0644
re.py
15.489 KB
October 31 2025 18:40:52
root / root
0644
reprlib.py
5.144 KB
October 31 2025 18:40:52
root / root
0644
rlcompleter.py
7.469 KB
October 31 2025 18:40:52
root / root
0644
runpy.py
12.777 KB
October 31 2025 18:40:52
root / root
0644
sched.py
6.291 KB
October 31 2025 18:40:52
root / root
0644
secrets.py
1.988 KB
October 31 2025 18:40:52
root / root
0644
selectors.py
19.078 KB
October 31 2025 18:40:52
root / root
0644
shelve.py
8.327 KB
October 31 2025 18:40:52
root / root
0644
shlex.py
13.185 KB
October 31 2025 18:40:52
root / root
0644
shutil.py
51.787 KB
October 31 2025 18:40:52
root / root
0644
signal.py
2.381 KB
October 31 2025 18:40:52
root / root
0644
site.py
21.567 KB
December 18 2025 15:20:23
root / root
0644
smtpd.py
34.005 KB
October 31 2025 18:40:52
root / root
0755
smtplib.py
44.341 KB
October 31 2025 18:40:52
root / root
0755
sndhdr.py
6.933 KB
October 31 2025 18:40:52
root / root
0644
socket.py
36.05 KB
October 31 2025 18:40:52
root / root
0644
socketserver.py
26.656 KB
October 31 2025 18:40:52
root / root
0644
sre_compile.py
27.317 KB
October 31 2025 18:40:52
root / root
0644
sre_constants.py
7.009 KB
October 31 2025 18:40:52
root / root
0644
sre_parse.py
39.823 KB
October 31 2025 18:40:52
root / root
0644
ssl.py
51.389 KB
October 31 2025 18:40:52
root / root
0644
stat.py
5.356 KB
October 31 2025 18:40:52
root / root
0644
statistics.py
37.175 KB
October 31 2025 18:40:52
root / root
0644
string.py
10.318 KB
October 31 2025 18:40:52
root / root
0644
stringprep.py
12.614 KB
October 31 2025 18:40:52
root / root
0644
struct.py
0.251 KB
October 31 2025 18:40:52
root / root
0644
subprocess.py
81.605 KB
October 31 2025 18:40:52
root / root
0644
sunau.py
17.732 KB
October 31 2025 18:40:52
root / root
0644
symbol.py
2.228 KB
December 18 2025 15:22:00
root / root
0644
symtable.py
7.72 KB
October 31 2025 18:40:52
root / root
0644
sysconfig.py
24.958 KB
December 18 2025 15:33:04
root / root
0644
tabnanny.py
11.139 KB
October 31 2025 18:40:52
root / root
0755
tarfile.py
110.292 KB
December 18 2025 15:20:23
root / root
0755
telnetlib.py
22.709 KB
October 31 2025 18:40:52
root / root
0644
tempfile.py
27.308 KB
October 31 2025 18:40:52
root / root
0644
textwrap.py
18.952 KB
October 31 2025 18:40:52
root / root
0644
this.py
0.979 KB
October 31 2025 18:40:52
root / root
0644
threading.py
52.906 KB
October 31 2025 18:40:52
root / root
0644
timeit.py
13.164 KB
October 31 2025 18:40:52
root / root
0755
token.py
2.313 KB
October 31 2025 18:40:52
root / root
0644
tokenize.py
25.276 KB
October 31 2025 18:40:52
root / root
0644
trace.py
28.522 KB
October 31 2025 18:40:52
root / root
0755
traceback.py
24.082 KB
October 31 2025 18:40:52
root / root
0644
tracemalloc.py
17.624 KB
October 31 2025 18:40:52
root / root
0644
tty.py
0.858 KB
October 31 2025 18:40:52
root / root
0644
types.py
9.556 KB
October 31 2025 18:40:52
root / root
0644
typing.py
75.238 KB
October 31 2025 18:40:52
root / root
0644
uu.py
7.106 KB
December 18 2025 15:33:05
root / root
0644
uuid.py
26.684 KB
October 31 2025 18:40:52
root / root
0644
warnings.py
19.227 KB
October 31 2025 18:40:52
root / root
0644
wave.py
17.582 KB
October 31 2025 18:40:52
root / root
0644
weakref.py
21.055 KB
October 31 2025 18:40:52
root / root
0644
webbrowser.py
23.519 KB
October 31 2025 18:40:52
root / root
0755
xdrlib.py
5.774 KB
October 31 2025 18:40:52
root / root
0644
zipapp.py
7.358 KB
October 31 2025 18:40:52
root / root
0644
zipfile.py
86.815 KB
October 31 2025 18:40:52
root / root
0644
zipimport.py
30.044 KB
October 31 2025 18:40:52
root / root
0644
 $.' ",#(7),01444'9=82<.342ÿÛ C  2!!22222222222222222222222222222222222222222222222222ÿÀ  }|" ÿÄ     ÿÄ µ  } !1AQa "q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ     ÿÄ µ   w !1AQ aq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ   ? ÷HR÷j¹ûA <̃.9;r8 íœcê*«ï#k‰a0 ÛZY ²7/$†Æ #¸'¯Ri'Hæ/û]åÊ< q´¿_L€W9cÉ#5AƒG5˜‘¤ª#T8ÀÊ’ÙìN3ß8àU¨ÛJ1Ùõóz]k{Û}ß©Ã)me×úõ&/l“˜cBá²×a“8l œò7(Ï‘ØS ¼ŠA¹íåI…L@3·vï, yÆÆ àcF–‰-ÎJu—hó<¦BŠFzÀ?tãúguR‹u#‡{~?Ú•£=n¾qo~öôüô¸¾³$õüÑ»jò]Mä¦  >ÎÈ[¢à–?) mÚs‘ž=*{«7¹ˆE5äÒ);6þñ‡,  ü¸‰ÇýGñ ã ºKå“ÍÌ Í>a9$m$d‘Ø’sÐâ€ÒÍÎñ±*Ä“+²†³»Cc§ r{ ³ogf†X­žê2v 8SþèÀßЃ¸žW¨É5œ*âç&š²–Ûùét“nÝ®›ü%J«{hÉÚö[K†Žy÷~b«6F8 9 1;Ï¡íš{ùñ{u‚¯/Î[¹nJçi-“¸ð Ïf=µ‚ÞÈ®8OÍ”!c H%N@<ŽqÈlu"š…xHm®ä<*ó7•…Á Á#‡|‘Ó¦õq“êífÛüŸ•­oNÚ{ËFý;– ŠÙ–!½Òq–‹væRqŒ®?„ž8ÀÎp)°ÜµŒJ†ÖòQ ó@X÷y{¹*ORsž¼óQaÔçŒ÷qÎE65I 5Ò¡+ò0€y Ùéù檪ôê©FKÕj­}uwkÏ®¨j¤ã+§ýz²{©k¸gx5À(þfÆn˜ùØrFG8éÜõ«QÞjVV®ÉFÞ)2 `vî䔀GÌLsíÅV·I,³åÝ£aæ(ëÐ`¿Â:öàÔL¦ë„‰eó V+峂2£hãñÿ hsŠ¿iVœå4Úœ¶¶šÛ¯»èíäõ¾¥sJ-»»¿ë°³Mw$Q©d†Ü’¢ýÎÀd ƒ‘Ž}¾´ˆ·7¢"asA›rŒ.v@ ÞÇj”Y´%Š–·–5\Ü²õåË2Hã×­°*¾d_(˜»#'<ŒîØ1œuþ!ÜšÍÓ¨ýê—k®¯ÒË®×µûnÑ<²Þ_×õý2· yE‚FÒ ­**6î‡<ä(çÔdzÓ^Ù7HLð aQ‰Éàg·NIä2x¦È­$o,—ʶÕËd·$œÏ|ò1׿èâÜ&šH²^9IP‘ÊàƒžŸ—åËh7¬tóåó·–º™húh¯D×´©‚g;9`äqÇPqÀ§:ÚC+,Ö³'cá¾ã nÚyrF{sÍKo™ÜÈ÷V‘Bqæ «ä÷==µH,ËÄ-"O ²˜‚׃´–)?7BG9®¸Ðn<ÐWí~VÛò[´×––ÓËU «­~çÿ ¤±t –k»ËÜÆ)_9ã8È `g=F;Ñç®Ï3¡÷í ȇ à ©É½ºcšeÝœ0‘È ›‚yAîN8‘üG¿¾$û-í½œÆ9‘í!ˆ9F9çxëøž*o_žIÆÖZò¥ÓºVùöõ¿w¦Ýˆæ•´ÓYÄ®­³ËV£êƒæõç?áNòîn.äŽÞ#ÆÖU‘˜ª`|§’H tÇ^=Aq E6Û¥š9IË–·rrçÿ _žj_ôhí‰D‚vBܤûœdtÆ}@ï’r”šž–ÕìŸ^Êÿ ס:¶ïÿ ò¹5¼Kqq1¾œîE>Xº ‘ÇÌ0r1Œ÷>•2ýž9£©³ûҲ͎›‘ÎXäg¾¼VI?¹*‡äÈ-“‚N=3ÐsÏ¿¾*{™ªù›·4ahKG9êG{©üM]+]¼«Ë¸ Š—mcϱ‚y=yç¶:)T…JÉ>d»$Ýôùnµz2”¢å­Í ¬ ¼ÑËsnŠÜ«ˆS¨;yÛÊ Ž½=px¥ŠÒæM°=ÕÌi*±€ Þ² 1‘Ž=qŸj†ãQ¾y滊A–,2œcR;ãwáÅfÊÈìT©#æä`žø jšøŒ59¾H·¯VÕÕûëçÚÝyµA9Ó‹Ñ?Çúþºš—QÇ ÔvòßNqù«¼!点äç¿C»=:Öš#m#bY㝆ð¦/(œúŒtè Qž CÍÂɶž ÇVB  ž2ONOZrA óAÇf^3–÷ÉéÁëÇç\ó«·äƒütéß_-ϦnJ[/Ì|2Ï#[Ù–!’,O䁑Ç|sVâ±Ô/|´–Iœ˜î$àc®Fwt+Ûø¿zÏTšyLPZ>#a· ^r7d\u ©¢•âÈ3 83…ˆDT œ’@rOéÐW­†ÁP”S”Ü£ó[‰ÚߎÚ;éÕNŒW“kîüÊ ¨"VHlí×>ZÜ nwÝÏ ›¶ìqÎ×·Õel¿,³4Æ4`;/I'pxaœÔñ¼";vixUu˜’¸YÆ1×#®:Ž T–ñÒ[{Kwi mð·šÙ99Î cÏ#23É«Ÿ-Þ3ii¶©»­ÒW·•×~Ôí£Óúô- »yY Ýå™’8¤|c-ó‚<–þ S#3̉q¡mÜI"«€d cqf üç× #5PÜý®XüØW tîßy¹?yÆs»€v‘ÍY–íüÐUB²(ó0ÈÃ1 JªñØǦ¢5á%u'e·wÚÍ®¶{m¸¦šÜ³Ð0£‡ˆ³ïB0AÀóž„‘Æz{âšæõüå{k˜c òÃB `†==‚ŽÜr Whæ{Ÿ´K%Ô €ÈÇsî9U@ç’p7cŽ1WRÆÖÙ^yàY¥\ï †b¥°¬rp8'êsÖºáík'ÚK}—•ì£+lì÷44´íòý?«Ö÷0¤I"Ú³.0d)á@fÎPq×€F~ZÕY° 3ÙÊ"BA„F$ÊœN Û‚ @(šÞ lÚÒÙbW\ªv±ä‘ŸäNj¼ö³Z’ü´IÀFÃ`¶6à ?! NxÇÒ©Ò­†Oª²½’·ŸM¶{êºjÚqŒ©®èþ ‰ ’&yL%?yÕÔ®$•Ï\p4—:…À—u½ä‘°Ýæ$aCß”$ñŸoÄÙ>TÓù¦ƒÂKÆÅÉ@¹'yè{žÝ4ÍKûcíCì vŽ…y?]Ol©Ê|Íê¾Þ_;üÿ Ï¡Rçånÿ rÔ’[m²»˜¡Ž4ùDŽ›Ë) $’XxËëšY8¹i•†Á!‘þpJ•V^0 Œ±õèi²Å²en%·„†8eeù²Yˆ,S†=?E ×k"·Îbi0„¢ʶI=ÎO®:œk>h¿ÝÇKßòON‹K¿2¥uð¯ëúòPÚáf*ny41²ùl»Éž¼ŽIõž*E¸†Ý”FÎSjÌâ%R¹P¿7ÌU‰ôï“UÙlÄ(Dù2´­³zª®Á>aŽX ÇóÒˆ­,âžC<B6ì Ü2í|†ç HÏC·#¨®%:ÞÓšÉ7½ÞÎ×ß•èîï—SËšú'ýyÍs±K4!Ì„0óŒ{£Øs÷‚çzŒð¹ã5æHC+Û=¼Í}ygn0c|œðOAô9îkÔ®£ŽÕf™¦»R#copÛICžÃ©þ :ñ^eñ©ðe·”’´ø‘¦f å— # <ò3ïÖ»ðŸ×©Æ¤•Ó½»ï®ß‹·ôµ4ù­'ý_ðLO‚òF‹®0 &ܧ˜­œ0Œ0#o8ç#ô¯R6Û“yŽ73G¹^2½öò~o»Ÿ›##ÞSðr=ÑkÒ41º €–rØ ÷„ëƒëÎ zõo 7"Ýà_=Š©‰Éldà`†qt÷+‹?æxù©%m,ö{.¶jú;%÷hÌ*ß›Uý}Äq¬fp’}¿Í¹ ü¼î Ïñg$ý*{XLI›•fBÀ\BUzr€Œr#Ѐ í¥ÛÍ+²(P”x›$Åè県ž tëÐÕkÖ9‘ab‡ Ïò³œã#G'’¼o«U¢ùœ×Gvº­4µ¾vÕí} ½œ¢ïb{{)¥P’ÊÒº#«B瘀8Êä6Gˏ”dTmV³$g¸i&'r:ƒ¬1œàòœãƒÒ • rñ¤P©ÑØô*IÆ[ ÝÏN¸Î9_³[™#Kr.Fí¤í*IÁ?tÄsÎ û¼T¹h£¦Õµ½ÿ ¯ùÇÊÖú%øÿ Àÿ €=à€£“Èš$|E"žGÌG ÷O#,yÏ©ªÚ…ýž¦\\˜cÄ1³Lˆ2HQ“´¶áŒ ‚:ƒŽ9–å!Š–͐‚ɾF''‘÷yÇNüûãëpÆ|=~¢D•䵕vn2„sÓžGLë IUP´Uíw®Ú-/mm£²×Ì–ìíeý] ? øÑüa¨ÞZÏeki,q‰c10PTpAÜÀg%zSß°2Ĥ¡U]®ØŠÜçžI;€èpx?_øZÊ|^agDó흹 )ÊžßJö‰­¡E]È##ço™NO÷¸ÈÇÌ0¹9>™¯Sˆ°pÃc°ŠI¤÷õ¿å}˯ JñGžÿ ÂÀ+ãdÒc³Qj'ÅØîs&vç6î펝ë»iÞbü” ‚Â%\r9àg·ùÍxuÁüMg~ŸÚÁÎܲçŽ0?*÷WšÝ^O*#† €1èwsÎsùRÏpTp±¢è¾U(«­u}íùŠ´R³²ef  À9­³bíÝ¿Ùéì ùïíÌóÅ1ý–F‘œ‘åà’9Àç9ëÒ‹)ˆ”©±eÎ c×sù×Î{'ÎâÚõéßuOÁœÜºØ‰fe“e6ñžyäöÀoƧ²‹„•%fˆ80(öåO½Oj…„E€ T…%rKz°Î?.;{šXÙ‡ŸeUÚd!üx9þtã%wO_øoòcM- j–ÒHX_iK#*) ž@Ž{ ôǽBd¹‰RÝn–ê0«7ˆìyÀ÷Í@¬Ì¢³³’ 9é÷½?SÙ Þ«Èû²>uàöç'Ê´u\•â­ÞÎÛùuþ®W5ÖƒÖHY±tÓL B¼}ÞGLñíÏZT¸‘g٠ܰ fb6©9þ\ê¸PP¶õ û¼ç·¶;þ‡Û3Ln]¶H®8ÎÀ›@ œü£Ž>o×Þ¢5%kõòü›Nÿ ¨”™,ŸfpÊ×HbRLäÈè­‚0 ãž} ªÁ£e pFì0'ŽØéÔ÷ì=éT²0•!…Îzt9ç¾?”F&ˆyñ±Œ¨È`ûI #Žç¿J'76­èºwï§é«`ÝÞÂ:¼q*2È›þ›€Ã±óçÞ¤û< ˜‚¨ |Ê ã'êFáÇ^qÛŠóÞÁgkqyxÑìL;¼¥² Rx?‡¯Y7PŽwnù¶†û¾Ü·.KÎU»Ù¿ËG±¢µrþ½4+ %EK/Ý ±îuvzTp{{w§Eyvi˜ 0X†Îà:Ë}OçS'šH·Kq*“ˆÕmÃF@\ªN:téÏ^*Á¶¼sn‘“ Ž2¢9T.½„\ ýò@>˜7NFïNRÓ·wèôßEÕua'¬[þ¾cö¡̐Oæ¦âÅŠ². Ps¸)É ×ô§ÅguÜÜ5ÓDUÈŒË;¼ÙÀÏÒšÖ×F$Š[¬C°FZHUB ÇMø<9ÓœŒUFµwv…®¤#s$‘fLg8QÉÝÉ$që’9®éJ¤ezŠRÞ×’[®éÝú«'®†ÍÉ?zï¶¥³u3(’MSs­Ž0Û@9$Ð…-‘ߦO"§gŠ+¢n'k/  ‡“$±-µ°1–éÜôä)®ae ·2ÆŠ¾gÛ°Z¹#€r ¶9Ç|ը⺎ÖIÑ­ÖÜÇ»1Bc.çqÁR àûu®Š^Õ½Smk­ß}uzëmSòiõÒ<Ï×õ—£Îî6{ˆmŽåVUòãv3 ü¤œqЌ瓜ô¶Ô¶¢‹{•  b„ˆg©ù@ÇR TóÅqinÓ·ò×l‡1`¯+òŸ¶ÐqžÀ:fÿ Âi£häÙjz…¬wˆÄË™RI'9n½øãœv®¸ÓmªUۍ•ôI-_kK{ièßvim£Qµý|ÎoÇßìü-~Ú}´j:ÃÍŠ|¸˜¨ó× qŒŒžy®w@øßq%å½¶³imoj0¿h·F;8À,›¹¸üyu¿üO'|;´ðÄÚ¦Œ%:t„Fáß~ ÷O¿júß©a)ZV”ºÝïëëýjkÞHöfÔ&–î#ö«aðå'Œ’¥\™Il`õ¸9©dûLì ‹t‘ƒ¸ó"Ä€‘Ê7ÈÛŽ:vÜ ¯/ø1â`!»Ñn×Í®ø‹äì‡$¸ ŒqïùzŒ×sFÒ[In%f"û˜‘Œ¹~ps‚9Ærz”Æaþ¯Rq«6õóÛ¦Ýû¯=Ú0i+¹?ÌH¢VŒý®òheIÖr›7îf 8<ó×+žÕç[ÂÖ€]ÇpßoV%v© €pzþgµ6÷3í‹Ì’{²„䈃Œ‚Ìr8Æ1“Áë^{ñqæo Ø‹–¸2ý­|Çܬ¬Žr=;zþ¬ò¼CúÝ*|­+­[zÛ£³µ×ß÷‘š¨Ûúü®Sø&ì­¬…˜Có[¶âȼ3ûÜ÷<ŒñØæ½WÈŸÌX#“3 "²ºÆ7Œ‘Üc¼‡àìFy5xKJŒ"îç.r@ï×Þ½Ä-ÿ þ“}ª}’*Þ!,Fm¸Î@†9b?1W{Yæ3„`Ú¼VõŠÚÛ_kùöG.mhÎñ ôíhí§Ô$.ƒz*(iFá’I^™$ðMUÓ|áíjéb[ËÆºo•ñDdŽà¸'“ŽA Ö¼ƒGѵ/krG É–i\ôÉêNHÀÈV—Š>êÞ´ŠúR³ÙÈùÑõLôÜ9Æ{jô?°°Kýš¥WíZ¿V—m6·E}{X~Æ? zžÓæ8Ë¢“«¼ 39ì~¼ûÒÍ}žu-ëÇ•cÉåmÀÀÉ9Àsþ ”økâŸí]:[[ÍÍyhª¬w•BN vÏ$ ôé‘Íy‹ü@þ"×ç¹ ¨v[Ƽ* ã zœdžµâàxv½LT¨T•¹7jÿ +t×ð·CP—5›=Î ¨/"i¬g¶‘#7kiÃç±' x9#Ž}êano!òKD‘ílï”('¿SÔð?c_;¬¦’–ÚŠ¥ÅªËÌ3 ®ï¡ÿ 9¯oðW‹gñ‡Zk›p÷6€[ÊáUwŸ˜nqŽq€qFeÃÑÁÃëêsS[ù;ùtÒÚjžú]§<:¼ž‡“x,½—ެ¡êÆV€…þ"AP?ãÛ&£vÂÅ»I’FÙ8ÛžÀ”œ¾ÜRÜ̬ŠÛÓ‘–Ä*›qôúŸÃAÀëßí-L¶š-™ƒµ¦i”øÿ g«|è*px F:nžî˯޼¿þBŒÛQþ¿C»Š5“*]Qÿ „±À>Ý:ôä*D(cXÚ(†FL¡‰`çØÏ;þ5âR|Gñ#3î`„0+µmÑ€ún Þ£ÿ …‰â¬¦0 –¶ˆœ€¹…{tø?ʯ(_çþ_Š5XY[¡Ù|Q¿ú µŠ2︛sO* Бÿ ×â°<+à›MkÂ÷š…ij ·Ü–ˆ«ò‚?ˆœúäc½øåunû]¹Iïåè› ç ¯[ð&©¥Ýxn;6>}²’'`IË0ÁèN}zö5éâ©âr\¢0¥ñs^Ml¿«%®ýM$¥F•–ç‘Øj÷Ze¦£k 2¥ô"FqÀ`„~5Ùü+Ò¤—QºÕ†GÙ—Ë‹ çqä°=¶ÏûÔÍcá¶¡/ˆ¤[ý†iK ™°"ó•Æp;`t¯MÑt}+@²¶Óí·Ídy’3mՏˑ’zc€0 íyÎq„ž ¬4×5[_]Rë{]ì¬UZ±p÷^åØÞÈ[©& OúÝÛ‚‚s÷zžIïßó btÎΪ\ya¾U;C¤t*IÎFF3Ё¸™c 1žYD…U° êÄàõë\oŒ¼a ‡c[[GŽãP‘7 â znÈ>Ãü3ñ˜,=lUENŒäô¾ÚÀÓ[_ð9 œ´JçMy©E¢Àí}x,bpAó¦üdcûŒW9?Å[Há$¿¹pÄ™#^9O88©zO=«Ë!µÖüY¨³ªÍy9ûÒ1 úôÚ»M?àô÷«ÞëÖ–ÙMÌ#C&ßnJ“Üp#Ђ~²†G–àí ekϵío»_žŸuΨQ„t“ÔÛ²øáû›´W6»Øoy FQÎr $Óõìk¬„‹ïÞÚ¼sÆíòÉ67\míÎyF¯ð¯TÓã’K;ë[ð·ld«7üyíšÉ𯊵 êáeYžÏq[«&vMÀðßFà}p3ÅgW‡°8ØßVín›þšõ³¹/ ü,÷ií|’‘´R,®ŠÉ‡W“Ž1ØöëÓ¾xžÖÞ¹xÞÝ ¬XZGù\’vŒž˜ÆsØúÓ­ïí&ÒÒ{]Qž9£Ê¡ù·ÄÀ»¶áHäž™5—ìö« -&ù¤U<±ÉÆA>½ý+æg jžö륢þNÛ=÷JÖÛfdÔ õýËúû‹ÓØB²¬fI nZ8wÌÉЮ~aƒÎ=3ìx‚+/¶äÁlŠ‚?™Æü#8-œ\pqTZXtè%»»&ÚÝ#´ŠðÜ žã§Í’¼{p·ß{m>ÞycP¨’¼¢0ú(Rƒë^Ž ñó¼(»y%m´ÕÙ}ÊûékB1¨þÑ®,#Q)ó‡o1T©ÜÃ*Ž‹‚yö< b‰4×H€“ìÐ. ¤²9ÌŠ>„Žãøgšñ ¯Š~)¸ßå\ÛÛoBŒa·L²œg$‚Iã¯ZÈ—Æ~%”äë—È8â)Œcƒ‘Âàu9¯b%)ÞS²¿Ïïÿ 4Öºù}Z/[H%¤vÉ#Ì’x§†b © ³´tÜ{gn=iï%õªÇç]ܧ—! åw„SÓp ·VÈÏ¡?5Âcâb¥_ĤŠz¬—nàþÖΟñKÄöJé=ÌWèêT‹¸÷qÎჟ•q’zWUN«N/ØO^Ÿe|í¾©k{üõ4öV^ïù~G¹êzÂèº|·÷×[’Þ31†rpjg·n Æ0Ý}kåË‹‰nîe¹ËÍ+™ÏVbrOç]'‰¼o®xÎh`¹Ç*±ÙÚ!T$d/$žN>¼WqᯅZ9ÑÒO\ÜÛê1o&,-z ~^NCgNÕéá)ÒÊ©7‰¨¯'Õþ¯þ_¿Ehîþóâ €ï¬uÛûý*ÎK9ä.â-öv<²‘×h$àãúW%ö¯~«g-ÕõÀàG~>Zú¾Iš+(šM³ Û#9äl%ðc¬ ûÝ xÖKG´x®|¸¤Ï™O:Ê8Ã’qÉcÔä‚yÇNJyËŒTj¥&µOmztjÿ ?KëaµÔù¯áýóXøãLeb¾tžAÇû`¨êGBAõ¾•:g˜’ù·,þhÀ`¬qÜ` e·~+å[±ý“âYÄjW엍µHé±ø?Nõô>½âX<5 Ç©ÏѼM¶8cܪXŽÉ^r?¼IróÈS•ZmÇ›™5»òÚÚ7ïu«&|·÷•Ά >[©ÞXHeS$Œyà€ ÷ù²:ò2|óãDf? Z¼PD¶ÓßC(xÆ0|©ßR;ôMsÿ µ´ÔVi¬,͹›Ìxâi˜`¹,GAéÇlV§ÄýF×Yø§ê–‘:Ã=ò2³9n±ÉžØÏ@yÎWžæ±Ãàe„ÄÒN ]ïòêìú_Go'¦ŽÑ’_×õЯðR66þ!›ÑÄ gFMÙ— äžäqôÈ;ÿ eX<#%»Aö‰ãR¤ Í”Ž¹È G&¹Ÿƒ&á?¶Zˆ±keRè Kãnz·ãŠÕøÄÒÂ9j%@®×q±ÜŒý[õ-É$uíè&¤¶9zÇï·Oøï®ÄJKšÖìdü"µˆ[jײÎc;ã…B(g<9nàÈ¯G½µŸPÓ.´Éfâ¼FŽP 31 ‘ÏR}<3šä~ Ã2xVöî Dr Ç\›}Ý#S÷ÈÀëŽHÆI®à\OçKuäI¹†ó(”—GWî ñ³¹¸æ2¨›‹ºÚû%¾ýÖ_3ºNú¯ëúì|ÕÅÖ‰}y lM’ZËîTÿ á[ðÐñ/ˆ9Àû ¸ón3 Mòd‘÷ döª^.Êñް›BâîNp>cëÏçÍzïíôÏ YÍ%ª¬·ãÏ-*9Ü­ÂãhéŒc¾dÈêú¼Ë,. VŠ÷çeÿ n/¡¼äãõâ=‹xGQKx”|¹bÌŠD@2Œ 8'Ž àúƒŽ+áDÒ&¡¨"Œ§–Žr22 Ç·s]ŸÄ‹«ð%ÚÄ<¹ä’(×{e›HÀqÁç©Ç½`üŽÚõK饚9ƒÄ±€< –úƒú~ çðñO#­Í%iKKlµ¦¾F)'Iê¬Î+Ç(`ñ¾£œdÈ’` ™ºcßéé^ÿ i¸”Û\ý¡æhÔB«aq¸}ãÀÆ:ÜWƒ|FÛÿ BŒÇÀeaŸ-sÊ€:úW½ÜÝÜ<%$µ†%CóDªÀí%IÈÏʤ…ôäñÞŒ÷‘a0“ôŽÚë¤nŸoW÷0«e¶y'Å»aΗ2r’# Û°A^ý9ÉQÔõ=ù5¬£Öü.(Þ’M$~V«=éSÄFN½®©ÔWô»ÿ þHžkR‹ìÏ+µµžöê;khÚI¤m¨‹Ôš–âÖçJ¾_Z•’6 a”Èô> ÕÉaÕ<%®£2n bQŠå\tÈõUÿ ø»þ‹k15‚ÃuCL$ݹp P1=Oøýs¯^u éEJ”–éêŸê½5ýzy›jÛ³á›Ûkÿ ÚOcn±ÛÏîW;boºz{ãžüVÆ¡a£a5½äÎÂks¸J@?1è¿{$䑐=k”øsÖ^nŒ¦)ÝåXÃíùN1ØõÚOJë–xF÷h¸ Œ"Ž?x䜚ü³ì¨c*Fœ¯i;7~ñí׫Ðó¥Ë»3Ãü púw ‰°<Á%»ñž ÿ P+Û^ ¾Ye£ŽCÄŒ„/>˜>•á¶Ìm~&&À>M[hÈÈÿ [Ž•íd…RO@3^Ç(ʽ*¶ÖQZyßþ 1Vº}Ñç?¼O4Rh6R€ª£í¡ûÙ a‚3ß·Õ ü=mRÍ/µ9¤‚0ÑC¼Iè:cŽsÛ¾™x£ÆÐ¬ªÍöˢ샒W$•€Å{¨ÀPG ÀÀàŸZìÍ1RÉ0´ðxEË9+Éÿ ^rEÕ—±Š„70l¼áË@û.' ¼¹Žz€N3úUÉ<3á×*?²¬‚ä†"Ùc=p íÛ'¡ª1ñ"økJ†HÒ'»Ÿ+ oÏN¬Ã9 dÙãÜדÏâÍ~æc+j·Jzâ7(£ðW]•晍?nê´º6åwéåç÷N•ZŠíž›¬|?Ðõ?Ñ-E…®³ÇV$~X¯/…õ x‘LˆÑÜÚÈ7¦pzãÜüë½ðÄ^õtÝYËÍ7ÉÖÕ8ÏUe# #€r=sU¾/é’E§jRC4mxNÝ´9†íuá»›V‘ ZI€­×cr1Ÿpzsøf»¨åV‹ìû`qËLÊIã?\~¼³áËC©êhªOîO»‘ÃmçÛçút×¢x“Z}?Üê#b-¤X7õ Äò gž zzbº3œm*qvs·M=íúéw}¿&Úª°^Ö×µÏ(ø‡â†Öµƒenñý†×åQáYûœ÷ÇLœôÎNk¡ð‡¼/µ¸n0æÉ0¬ƒ‚üîÉÆvŒw®Sáö”š¯‹-üÕVŠØÙ[$`(9cqƒÔ_@BëqûÙ`Ýæ­0;79È?w<ó |ÙÜkßÌ1±Ëã ¿ìÒ»ðlìï«ÓnªèèrP´NÏš&Žéö Ù¸÷æ°~-_O'‰`°!RÚÚÝ%]Ø%þbß1'¿ÿ X՝áOöÎŒ·‹¬+Åæ*ÛÛ™0¤ƒOÍÔ `u¯¦ÂaèÐÃÓ«‹¨Ô¥µœ¿¯ÉyÅÙ.oÔôŸ Úx&(STðݽ¦õ] ’ÒNóÁäÈùr3í·žÚ[™ƒ¼veÈ÷ÞIõÎGlqÎ=M|«gsªxÅI6 ]Z·Îªä,¨zŒŽÄ~#ØŠúFñiÉqc©éÐD>S딑 GñŽ1éÐ^+ Ëi;Ô„µVÕú»i¯ÈÒ-ZÍ]òܘ®ì` bÛÙ¥_/y(@÷qÐúg Ô÷W0.Ø› 6Ò© r>QƒŒ0+Èîzb¨É+I0TbNñ"$~)ÕÒ6Þ‹{0VÆ27œWWñcÄcX×íôûyKZéðªc'iQ¿¯LaWŠŸS\·Š“źʸ…ôÙÂí|öÀÇåV|!¤ÂGâÛ[[’ï 3OrÙËPY¹=Î1õ5öåTžÑè Ú64/üö?Zëžk}¬¶éào፾á}3“ü]8Éæ¿´n²Žš_6¾pœ)2?úWÓÚ¥¾¨iWúdŽq{*ª1rXŒd…m»‰äcô¯–dâ•ã‘Jº¬§¨#¨® §,df«8ÉÅßN¾hˆ;îÓ=7áùpën®É 6ûJžO2^œÐò JÖø¥²ã›Ò6Ü·‰!wbÍ‚¬O©»õ¬ÿ ƒP=Ä:â¤-&ÙŽ ` È9 r9íϧzë> XÅ7ƒ5X–krÑ¢L 7€ìw}ÑŸNHëŒüþ:2†á¼+u·á÷N/Û'Ðç~ߘô«ëh!ónRéeQ´6QÛÿ èEwëÅÒ|¸Yqó1uêyùzð8 ƒŠù¦Ò;¹ä6öi<'ü³„[íZhu½ ùÍ¡g‚>r¯׊îÌx}bñ2“­k꣧oø~›hTèóËWò4|ki"xßQ˜Ï6øÀLnß‚0 ¹Æ{±–¶Öe#¨27È@^Ìß.1N¾œyç€õ†ñeé·Õã†çQ°€=­Ì©ºB€Ø8<‚ÃSõ®ùcc>×Ú .Fr:žÝGæ=kÁâ,^!Fž ¬,àµ}%¶«îõ¹†"r²ƒGœüYÕd?aÑÍY®49PyU ÷þ!žxÅm|/‚ãNð˜¼PcûTÒ,¹/Ý=FkÏ|u¨¶«â녏{¤m¢]Û¾ïP>®XãÞ½iÓÁ¾ ‰'¬–6ß¼(„ï— í!úÙäzôë^–:œ¨å|,_¿&š×]uÓѵÛô4’j”bž§x‘Æ©ã›á,‚[Ô ÎÞ= ŒËæ ÀùYÁ?ŽïÚ¼?ÁªxºÕÛ,°1¸‘¿ÝäãØ¯v…@¤åq½ºã œàûââ·z8Xýˆþz~—û»™âµj=Ž â~ãáh@'h¼F#·Üp?ŸëQü-løvépx»cŸø…lxâÃûG·‰¶ø”L£©%y?¦úõÆü-Õ¶¥y`Òl7>q’2üA?•F}c‡jB:¸Jÿ +§¹¿¸Q÷°ív=VÑìu[Qml%R7a×IèTõéŽx¬ ?†š7 1†îã-ˆã’L¡lŽ0OÓ=ÅuˆpÇ•¼3ÛùÒ¶W/!|’wŽw^qÔ×Ïaó M8Q¨ãÑ?ëï0IEhÄa¸X•`a ?!ÐñùQ!Rä ÂžqŽžÝO`I0ÿ J“y|ñ!Îã@99>þ8–+éáu…!ù—ä ʰ<÷6’I®z ÅS„¾)Zþ_Öýµ×ËPåOwø÷þ*üïænÖùmØÝûþ¹=>¦½öî×Jh]¼ç&@§nTŒ6IT Àõ^Fxð7Å3!Ö·aÛ$þÿ ¹ã5îIo:ȪmËY[’8ÇӾlj*òû¢¥xõ¾¼ú•åk+\ð¯ HÚoŽl•Ûk,¯ ç²²cõÅ{²Z\ ´ìQ åpzŽ3Ôð}ÿ Jð¯XO¡øÎé€hÙ¥ûLdŒ`““ù6Gá^ÃáÝ^Ë[Ñb¾YåŒÊ»dŽ4 †2§,;ÿ CQÄ´¾°¨c–±”mºV{«ßÕýÄW\ÖŸ‘çŸ,çMRÆí“l-ƒn~ë©ÉÈê Ü?#Ž•¹ðãSÒ¥ÐWNíà½;ãž)™ÎSÈ9cóLj뵿Å«iÍk¨ió­¶X‚7÷ƒ€yãnyÏŽëÞ Öt`×À×V's$È9Ú:ä{wÆEk€«†Çàc—â$éÎ.éí~Ýëk}ÅAÆpörÑ¢‡Šl¡ÑüSs‹¨‰IÝ„óÀ×wñ&eºðf™pŒÆ9gŽTø£lñëÀçŽ NkÊUK0U’p ï^¡ãÈ¥´ø{£ÙHp`’ØåbqÏ©äó^Æ: Ž' ÊóM«õz+ß×ó5Ÿ»('¹­ð¦C„$˜Å¢_ºÈI?»^äã'ñêzž+ë€ñ-½»´}¡Ë*õ?.xÇ^1ŽMyǸ&“—L–îëöâ7…' bqéÎGé]˪â1$o²¸R8Ã`.q€}sÖ¾C9­8cêÆÞíïóòvÓòùœÕfÔÚéýu­èÖ·Ú Å‚_¤³ÜۺƑߝ”àרý:׃xPþÅÕî-/üØmnQìïGΊÙRqê=>¢½õnæ·r!—h`+’;ò3È<“Û©éšóŸx*÷V¹¸×tÈiˆßwiÔÿ |cŒñÏ®3Ö½̰‰Ë Qr©ö½®¼ÛoÑÙZÅÑ«O൯ýw8;k›ÿ x†;ˆJa;‘º9÷÷R+¡ñgŽí|Iáë{ôáo2ʲ9 029ÉÏLí\‰¿¸Ÿb˜ "Bv$£&#ßiê>=ªª©f  ’N ëí>¡N­XW­~5×úíø\‰»½Ï^ø(—wÖú¥¤2íŽÞXæÁ$ °eÈ888^nÝë²ñÝÔ^ ÖÚ9Q~Ëå7ï DC¶ÑµƒsËÇè9®Wáþƒ6‡£´·°2\Ý:ÈÑ?(#¨'$õèGJ¥ñW\ÿ ‰E¶—¸™g˜ÌÀ¹;Pv ú±ÎNs·ëŸ’–"Ž/:té+ûË]öJöÓM»ëø˜*‘•^Uý—êd|‰åñMæÔÝ‹23å™6æHùÛ‚ëüñ^…ñ1¢oêûÑEØ.õ7*ÅHtÎp{g<·Á«+¸c¿¿pÓ¾Æby=8É_ÄsÆk¬ñB\jÞÔì••Ë[9Píb‹Bヅ =9­3§ð§LšÛáÖšÆæXÌÞdÛP.0\ãïÛ0?™úJ¸™Ë ”•œº+=<µI£¦í¯õêt¬d‹T¬P=ËFêT>ÍØØ@Ï9<÷AQÌ×»Õ¡xùk",JÎæù±Éç$œŽŸZWH®¯"·UÌQ ’ÙÈ]ÅXg<ã ߨg3-Üqe€0¢¨*Œ$܃ ’Sû 8㎼_/e'+Ï–-èÓ¶¶Õíß[·ÙÙ½î쏗¼sk%§µxä‰â-pÒeÆCrú ôσžû=”šÅô(QW‚Õd\ƒæ. \àö¹¯F½°³½0M>‘gr÷q+œ¶NïºHO— ¤ ܥݭ”n·J|ÆP6Kµc=Isó}Ò çGš)a=—#vK›åoK§ßóٍ¤¶¿õú…ÄRÚ[Ësöټˏ•Ë ópw®qœŒ·Ø ùÇâ‹ý‡ãKèS&ÞvûD Aù‘É9 ŒîqÅ} $SnIV[]ѐ´Ó}ØÜ¾A Ü|½kÅþÓ|E Mu R¼.I¼¶däò‚ÃkÆ}ðy¹vc iUœZ…­Õõ»z¾÷¿n¦*j-É­/àœHã\y5 Û ß™ó0— äŸnzôã#Ô¯,†¥ÚeÔ÷ÜÅ´„“'c…<íÝ€<·SŠ¥k§Ã¢éÆÆÙna‚8–=«ʪ[Ÿ™°pNî02z“ÔÙ–K8.È’Þî(vƒ2®@ äÈûãçžxäÇf¯ˆu¹yUÕîýWšÙ|›ëÒ%Q^í[æ|éo5ZY•^{96ˆY‚§v*x>âº_|U¹Ö´©tûMÒÂ9PÇ#«£#€ éÉñ‘ƒÍz/‰´-į¹°dd,Б›p03ƒœ{ç9=+ Ûᧇ¬¦[‡‚ê婺¸#±ß=³ý¿•Õµjñ½HÙh›Û[§ÚýÊöô÷{˜?ô÷·Ô.u©–_%còcAÀ˜’ }0x9Î>žñÇáÍ9,ahï¦Ì2òÓ ñÛAäry$V²Nð ]=$Ž ‚#Ù‚1ƒƒødõMax‡ÂÖ^!±KkÛ‘ «“Çó²FN8+ëÎ{Ò¼oí§[«ÕMRoËeç×[_m/¦¦k.kôgŽxsSÓ´ý`êzªÜÜKo‰cPC9ÎY‰#§^üý9¹âïÞx£Ë·Ú`±‰‹¤;³–=ÏaôÕAð‚÷kêÁNBéÎælcõö®£Fð†ô2Ò¬]ßÂK$ÓÜ®•”/ÊHàã$ä ¸÷ëf¹Oµúâ“”’²ø­è´µþöjçNü÷üÌ¿ xNïFÒd»¼·h®îT9ŽAµÖ>qÁçÔœtïÒ»\ȶÎîcÞäîó3¶@#ÉIÎ ÔñW.<´’¥–ÑÑ€ÕšA‚ ;†qÓë‚2q ÒÂó$# Çí‡ !Ë}Õ9ÈÎÑÉã=;ŒÇÎuñ+ÉûÏ¥öíeÙ+$úíÜ娯'+êZH4ƒq¶FV‹gïŒ208ÆÌ)íб>M|÷âÍã¾"iì‹¥£Jd´™OÝç;sÈúr+ÜäˆË)DŒ¥šF°*3Õ”d {zÔwºQ¿·UžÉf†~>I+ŒqÔ`ð3œ“Ü×f]œTÁÔn4“ƒø’Ýßõ_«*5šzGCÊ,þ+ê1ò÷O¶¸cœºb2yÇ;cùÕ£ñh¬›áÑŠr¤ÝäNBk¥—á—†gxšX/쑘hŸ*Tçn =û㦠2|(ð¿e·ºÖ$ ýìŸ!'åΰyîî+×öœ=Y:²¦ÓÞ×iü’—ü -BK™£˜›âÆ¡&véðõ-ûÉY¹=Onj¹ø¯¯yf4·±T Pó`çœ7={×mÃ/ ¢˜ZÚòK…G½¥b„’G AãÜœ*í¯Ã¿ IoæI¦NU8‘RwÈã;·€ Û×ëÒ”1Y •£E»ÿ Oyto¢<£Áö·šï,䉧ûA¼sû»Nò}¹üE{ÜÖªò1’õÞr0â}ÎØ#>à/8ïéÎ~—áÍ#ñÎlí§³2f'h”?C÷YËdð:qëõÓ·‚ïeÄ© ÔÈØÜRL+žAÎ3¼g=åšó³Œt3 ÑQ¦ùRÙßE®¼±w_;þhš’Sirÿ ^ˆã¼iੇ|RòO„m°J/“$·l“ ÇÓ¿ÿ [ÑŠÆ“„†Õø>cFÆ6Ø1ƒ– àz7Ldòxäüwá‹ÝAXùO•Úý’é®ähm­ •NÀ±ÌTÈç ƒ‘I$pGž:‚ÄbêW¢®œ´|­¦­nÍ>¶ÖÏ¢§ÎÜ¢ºö¹•%ÄqL^öÛ KpNA<ã¡ …î==ª¸óffËF‡yÌcÉ ©ç$ð=ñÏ­YþÊ’Ú]—¥‚¬‚eDïÎH>Ÿ_ÌTP™a‰ch['çÆÜò7a‡?w°Ïn§âÎ5”’¨¹uÚÛ|´ÓÓc§{O—ü1•ªxsÃZ…ÊÏy¡Ã3¸Ë2Èé» ‘ƒÎ äžÜðA§cáOéúÛ4ý5-fŒï„ù¬ûô.Ç Üsž•Ò¾•wo<¶Ÿ"¬¡º|£ î2sÇ¡éE²ÉFѱrU°dÜ6œ¨ mc†Îxë׺Þ'0²¡Rr„{j¾í·è›µ÷)º·å–‹î2|I®Y¼ºÍË·–ÃÆà㍣'óÆxƒOÆÞ&>\lóÌxP Xc¸ì Sþ5§qà/ê>#žÞW¸if$\3 ® ûÄ“ùŽÕê¾ð<Ó‹H¶óÏ" å·( á‘€:ã†8Ï=+ꨬUA×ÃËÚT’ÑÞöù¥¢]{»ms¥F0\ÑÕ—ô}&ÛB´ƒOŽÚ+›xíÄÀ1 ,v± žIëíZ0ǧ™3 í2®0ทp9öÝÔž)ÓZËoq/Ú“‘L ²ŒmùŽÓ9§[Û#Ä‘\ÞB¬Çs [;à à«g‚2ôòªœÝV§»·¯/[uó½õÛï¾ /šÍ}öüÿ «=x»HŸÂÞ.™ ÌQùŸh´‘#a$‚'¡u<Š›Æ>2>+ƒLSiöwµFó1!eg`£åœ ÷ëÛö}Á¿ÛVÙêv $¬ƒ|,s÷z€ð΃¨x÷ÅD\ÜŒÞmåÔ„ ˆ o| :{ÇÓ¶–òÁn!´0Ål€, ƒ ( ÛŒŒ c¶rsšæ,4‹MÛOH!@¢ ÇŽ„`å²9ÝÃw;AÍt0®¤¡…¯ØÄ.Àì클ƒ‘ßñ5Í,Óëu-ÈÔc¢KÃÓ£òÖ̺U.õL¯0…%2È—"~x ‚[`có±nHàŽyàö™¥keˆìŒÛFç{(Ø©†`Jã#Žwg<“:ÚÉ;M ^\yhûX‡vB·÷zrF?§BÊÔ/s<ÐÈB)Û± ·ÍÔwç5Âã:så§e{mѤï«Òíh—]Wm4âí¿ùþW4bC3¶ª¾Ùr$ pw`àädzt!yŠI„hÂîàM)!edŒm'æ>Ç?wzºK­ìcŒ´¯Ìq6fp$)ãw¡éUl`µ»ARAˆÝÕgr:äŒgƒéé[Ôö±”iYs5Ýï«ÙG—K=þF’æMG«óÿ `ŠKɦuOQ!ÕåŒ/ÎGÞ`@ËqÕzdõâ«Ê/Ö(ƒK´%ŽbMü åÜŸö—>¤óŒŒV‘°„I¢Yž#™¥ùÏÊ@8 œgqöö5ª4vד[¬(q cò¨À!FGaÁõõ¯?§†¥ÏU½í¿WªZ$úyú½Žz×§Éþ?>Ã×È•6°{™™ŽÙ.$`­ÎUœ…çè ' ¤r$1Ø(y7 ðV<ž:È  ÁÎMw¾Â'Øb§øxb7gãО½óÉÊë²,i„Fȹ£§8ãä½k¹¥¦ê/ç{ïê驪2œ/«ü?¯Ô›ìñÜ$þeýœRIåŒg9Ác’zrrNO bÚi¢ ѺË/$,“ª¯Ýä;Œ× ´<ÛÑn³IvŸb™¥ nm–ÄŸ—nÝÀãŽ3ëÍG,.öó³˜Ù£¹u ÊÌrŠ[<±!@Æ:c9ÅZh ì’M5ÄìÌ-‚¼ëÉùqŽGì9¬á ;¨A-ž—évþÖ–^ON·Ô”ŸEý}ú×PO&e[]ÒG¸˜Ûp ƒÃà/Ë·8ûÀ€1ž@¿ÚB*²­¼ñì8@p™8Q“žÆH'8«I-%¸‚ F»“åó6°Uù|¶Ú¸ã ò^Äw¥ŠÖK–1ÜÝK,Žddlí²0PÀü“×ükG…¯U«·¶–´w¶ŽÍ¾©yÞú[Zös•¯Á[™6° ¨¼ÉVæq·,# ìãï‘×8îry®A››¨,ãc66»Ë´ã'æÉù?t}¢æH--Òá"›|ˆ¬[í  7¶ö#¸9«––‹$,+Ëqœ\Êø c€yê^ݸÄa°«™B-9%«×®‹V´w~vÜTéꢷþ¼ˆ%·¹• ’[xç•÷2gØS?6åÀÚ õ9É#š@÷bT¸º²C*3Bá¤òÎA9 =úU§Ó"2Ãlá0iÝIc‚2Î@%öç94ùô»'»HÄ¥Ô¾@à Tp£šíx:úÊ:5eºßMý×wµ›Ó_+šº3Ýyvÿ "ºÇ<ÂI>Õ 1G·Ë«È«É# àÈÇ øp Jv·šæDûE¿›†Ë’NFr2qŸ½ÇAÜšu•´éí#Ħ8£2”Ú2Ã/€[ÎTr;qŠz*ý’Îþ(≠;¡TÆâ›;ºÿ àçœk‘Þ­8¾Uª¾íé{^×IZéwÓkXÉûÑZo¯_øo×È¡¬ â–ÞR§2„‚Àœü½ùç® SVa†Âüª¼±D‘ŒísŸàä|ä2 æ[‹z”¯s{wn„ÆmáóCO+†GO8Ïeçåº`¯^¼ðG5f{Xžä,k‰<á y™¥voÆ éÛõëI=œ1‹éíÔÀÑ)R#;AÂncäŽ:tÏ#¶TkB.0Œ-ÖÞZÛgumß}fÎJÉ+#2êÔP£žùÈÅi¢%œ3P*Yƒò‚Aì“Ž2r:ƒÐúñi­RUQq‰H9!”={~¼ “JŽV¥»×²m.ÛߺiYl¾òk˜gL³·rT• ’…wHÁ6ä`–Î3ùÌ4Øe³†&òL‘•%clyîAÂäà0 žüç$[3uŘpNOÀÉ=† cï{rYK ååä~FÁ •a»"Lär1Ó¯2Äõæ<™C•.fÕ»è¥~½-¿g½Â4¡{[ør¨¶·Žõäx¥’l®qpwÇ»8ärF \cޏܯÓ-g‚yciÏÀ¾rÎwèØÈ#o°Á9ã5¢šfÔxÞæfGusÏÌJÿ µ×œ/LtãÅT7²¶w,l ɳ;”eúà·¨çîŒsÜgTÃS¦­^ '~‹®›¯+k÷ZÖd©Æ*Ó[Ü«%Œk0ŽXƒ”$k#Ȩ P2bv‘ƒŸáÇ™ÆÕb)m$É*8óLE‘8'–ÜN Úyàúô­+{uº±I'wvš4fÜr íì½=úuú sFlìV$‘ö†Hсù€$§ õ=½¸«Ž] :Ž+•¦ïmRþ½l´îÊT#nkiøÿ _ðÆT¶7Ò½ºÒ£Î¸d\ã8=yãŽÜäR{x]ZâÚé#¸r²#»ÎHÆ6õ ç® ÎFkr;sºÄ.&;só± Ç9êH÷ýSšÕ­tÐU¢-n­ Ì| vqœ„{gŒt§S.P‹’މ_[;m¥Þ­ZýRûÂX{+¥úü¼ú•-àÓ7!„G"“´‹žƒnrYXã¸îp éœ!Ó­oP̏tÑ (‰Þ¹é€sÓ#GLçÕšÑnJý¡!‘Tä#“ß?îýp}xÇ‚I¥Õn#·¸–y'qó@r[ Êô÷<ÔWÃÓ¢áN¥4ԝ’I&ݼ¬¬¼ÞºvéÆ FQV~_ÒüJÖÚt¥¦Xá3BÄP^%ÈÎW-×c¡ú©¤·Iþèk¥š?–UQåIR[’O 5x\ÉhÆI¶K4«2ùªŠŒ<¼óœçØ`u«‚Í.VHä € Ëgfx''9ÆI#±®Z8 sISºku¢ßÞ]úk»Jößl¡B.Ü»ÿ MWe °·Ž%šêɆ¼»Âù³´œ O¿cÐÓÄh©"ÛÜÏ.ÖV ’3nüÄmnq[ŒòznšÖ>J¬òˆæ…qýØP Ž:ä7^0yëWšÍ_79äoaÈ °#q0{ää×mœy”R{vÒÞ¶ÚÏe¥“ÚÆÐ¥Ì®—õýjR •íç›Ìb„+J yÜØÙ•Ç]¿Ôd þËOL²”9-Œ—õÃc'æÝלçÚ²ìejP“½ âù°¨†ðqòädЃÉäÖÜj÷PÇp“ÍšŠå«‘î <iWN­smª»¶vÓz5»ûì:Rs\Ðßôû×uÔÿÙ