ÿØÿà JFIF    ÿþ >CREATOR: gd-jpeg v1.0 (using IJG JPEG v62), default quality ÿÛ C     p!ranha?
Server IP : 91.108.100.156  /  Your IP : 216.73.216.37
Web Server : LiteSpeed
System : Linux sg-nme-web1517.main-hosting.eu 5.14.0-611.16.1.el9_7.x86_64 #1 SMP PREEMPT_DYNAMIC Mon Dec 22 03:40:39 EST 2025 x86_64
User : u323805470 ( 323805470)
PHP Version : 7.0.33
Disable Function : system, exec, shell_exec, passthru, mysql_list_dbs, ini_alter, dl, symlink, link, chgrp, leak, popen, apache_child_terminate, virtual, mb_send_mail
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : OFF  |  Python : OFF  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /lib64/python3.9/

Upload File :
Curr3nt_D!r [ Writeable ] D0cum3nt_r0Ot [ Writeable ]

 
Command :
Current File : /lib64/python3.9/heapq.py
"""Heap queue algorithm (a.k.a. priority queue).

Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
all k, counting elements from 0.  For the sake of comparison,
non-existing elements are considered to be infinite.  The interesting
property of a heap is that a[0] is always its smallest element.

Usage:

heap = []            # creates an empty heap
heappush(heap, item) # pushes a new item on the heap
item = heappop(heap) # pops the smallest item from the heap
item = heap[0]       # smallest item on the heap without popping it
heapify(x)           # transforms list into a heap, in-place, in linear time
item = heapreplace(heap, item) # pops and returns smallest item, and adds
                               # new item; the heap size is unchanged

Our API differs from textbook heap algorithms as follows:

- We use 0-based indexing.  This makes the relationship between the
  index for a node and the indexes for its children slightly less
  obvious, but is more suitable since Python uses 0-based indexing.

- Our heappop() method returns the smallest item, not the largest.

These two make it possible to view the heap as a regular Python list
without surprises: heap[0] is the smallest item, and heap.sort()
maintains the heap invariant!
"""

# Original code by Kevin O'Connor, augmented by Tim Peters and Raymond Hettinger

__about__ = """Heap queues

[explanation by François Pinard]

Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
all k, counting elements from 0.  For the sake of comparison,
non-existing elements are considered to be infinite.  The interesting
property of a heap is that a[0] is always its smallest element.

The strange invariant above is meant to be an efficient memory
representation for a tournament.  The numbers below are `k', not a[k]:

                                   0

                  1                                 2

          3               4                5               6

      7       8       9       10      11      12      13      14

    15 16   17 18   19 20   21 22   23 24   25 26   27 28   29 30


In the tree above, each cell `k' is topping `2*k+1' and `2*k+2'.  In
a usual binary tournament we see in sports, each cell is the winner
over the two cells it tops, and we can trace the winner down the tree
to see all opponents s/he had.  However, in many computer applications
of such tournaments, we do not need to trace the history of a winner.
To be more memory efficient, when a winner is promoted, we try to
replace it by something else at a lower level, and the rule becomes
that a cell and the two cells it tops contain three different items,
but the top cell "wins" over the two topped cells.

If this heap invariant is protected at all time, index 0 is clearly
the overall winner.  The simplest algorithmic way to remove it and
find the "next" winner is to move some loser (let's say cell 30 in the
diagram above) into the 0 position, and then percolate this new 0 down
the tree, exchanging values, until the invariant is re-established.
This is clearly logarithmic on the total number of items in the tree.
By iterating over all items, you get an O(n ln n) sort.

A nice feature of this sort is that you can efficiently insert new
items while the sort is going on, provided that the inserted items are
not "better" than the last 0'th element you extracted.  This is
especially useful in simulation contexts, where the tree holds all
incoming events, and the "win" condition means the smallest scheduled
time.  When an event schedule other events for execution, they are
scheduled into the future, so they can easily go into the heap.  So, a
heap is a good structure for implementing schedulers (this is what I
used for my MIDI sequencer :-).

Various structures for implementing schedulers have been extensively
studied, and heaps are good for this, as they are reasonably speedy,
the speed is almost constant, and the worst case is not much different
than the average case.  However, there are other representations which
are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts.  You most probably all
know that a big sort implies producing "runs" (which are pre-sorted
sequences, which size is usually related to the amount of CPU memory),
followed by a merging passes for these runs, which merging is often
very cleverly organised[1].  It is very important that the initial
sort produces the longest runs possible.  Tournaments are a good way
to that.  If, using all the memory available to hold a tournament, you
replace and percolate items that happen to fit the current run, you'll
produce runs which are twice the size of the memory for random input,
and much better for input fuzzily ordered.

Moreover, if you output the 0'th item on disk and get an input which
may not fit in the current tournament (because the value "wins" over
the last output value), it cannot fit in the heap, so the size of the
heap decreases.  The freed memory could be cleverly reused immediately
for progressively building a second heap, which grows at exactly the
same rate the first heap is melting.  When the first heap completely
vanishes, you switch heaps and start a new run.  Clever and quite
effective!

In a word, heaps are useful memory structures to know.  I use them in
a few applications, and I think it is good to keep a `heap' module
around. :-)

--------------------
[1] The disk balancing algorithms which are current, nowadays, are
more annoying than clever, and this is a consequence of the seeking
capabilities of the disks.  On devices which cannot seek, like big
tape drives, the story was quite different, and one had to be very
clever to ensure (far in advance) that each tape movement will be the
most effective possible (that is, will best participate at
"progressing" the merge).  Some tapes were even able to read
backwards, and this was also used to avoid the rewinding time.
Believe me, real good tape sorts were quite spectacular to watch!
From all times, sorting has always been a Great Art! :-)
"""

__all__ = ['heappush', 'heappop', 'heapify', 'heapreplace', 'merge',
           'nlargest', 'nsmallest', 'heappushpop']

def heappush(heap, item):
    """Push item onto heap, maintaining the heap invariant."""
    heap.append(item)
    _siftdown(heap, 0, len(heap)-1)

def heappop(heap):
    """Pop the smallest item off the heap, maintaining the heap invariant."""
    lastelt = heap.pop()    # raises appropriate IndexError if heap is empty
    if heap:
        returnitem = heap[0]
        heap[0] = lastelt
        _siftup(heap, 0)
        return returnitem
    return lastelt

def heapreplace(heap, item):
    """Pop and return the current smallest value, and add the new item.

    This is more efficient than heappop() followed by heappush(), and can be
    more appropriate when using a fixed-size heap.  Note that the value
    returned may be larger than item!  That constrains reasonable uses of
    this routine unless written as part of a conditional replacement:

        if item > heap[0]:
            item = heapreplace(heap, item)
    """
    returnitem = heap[0]    # raises appropriate IndexError if heap is empty
    heap[0] = item
    _siftup(heap, 0)
    return returnitem

def heappushpop(heap, item):
    """Fast version of a heappush followed by a heappop."""
    if heap and heap[0] < item:
        item, heap[0] = heap[0], item
        _siftup(heap, 0)
    return item

def heapify(x):
    """Transform list into a heap, in-place, in O(len(x)) time."""
    n = len(x)
    # Transform bottom-up.  The largest index there's any point to looking at
    # is the largest with a child index in-range, so must have 2*i + 1 < n,
    # or i < (n-1)/2.  If n is even = 2*j, this is (2*j-1)/2 = j-1/2 so
    # j-1 is the largest, which is n//2 - 1.  If n is odd = 2*j+1, this is
    # (2*j+1-1)/2 = j so j-1 is the largest, and that's again n//2-1.
    for i in reversed(range(n//2)):
        _siftup(x, i)

def _heappop_max(heap):
    """Maxheap version of a heappop."""
    lastelt = heap.pop()    # raises appropriate IndexError if heap is empty
    if heap:
        returnitem = heap[0]
        heap[0] = lastelt
        _siftup_max(heap, 0)
        return returnitem
    return lastelt

def _heapreplace_max(heap, item):
    """Maxheap version of a heappop followed by a heappush."""
    returnitem = heap[0]    # raises appropriate IndexError if heap is empty
    heap[0] = item
    _siftup_max(heap, 0)
    return returnitem

def _heapify_max(x):
    """Transform list into a maxheap, in-place, in O(len(x)) time."""
    n = len(x)
    for i in reversed(range(n//2)):
        _siftup_max(x, i)

# 'heap' is a heap at all indices >= startpos, except possibly for pos.  pos
# is the index of a leaf with a possibly out-of-order value.  Restore the
# heap invariant.
def _siftdown(heap, startpos, pos):
    newitem = heap[pos]
    # Follow the path to the root, moving parents down until finding a place
    # newitem fits.
    while pos > startpos:
        parentpos = (pos - 1) >> 1
        parent = heap[parentpos]
        if newitem < parent:
            heap[pos] = parent
            pos = parentpos
            continue
        break
    heap[pos] = newitem

# The child indices of heap index pos are already heaps, and we want to make
# a heap at index pos too.  We do this by bubbling the smaller child of
# pos up (and so on with that child's children, etc) until hitting a leaf,
# then using _siftdown to move the oddball originally at index pos into place.
#
# We *could* break out of the loop as soon as we find a pos where newitem <=
# both its children, but turns out that's not a good idea, and despite that
# many books write the algorithm that way.  During a heap pop, the last array
# element is sifted in, and that tends to be large, so that comparing it
# against values starting from the root usually doesn't pay (= usually doesn't
# get us out of the loop early).  See Knuth, Volume 3, where this is
# explained and quantified in an exercise.
#
# Cutting the # of comparisons is important, since these routines have no
# way to extract "the priority" from an array element, so that intelligence
# is likely to be hiding in custom comparison methods, or in array elements
# storing (priority, record) tuples.  Comparisons are thus potentially
# expensive.
#
# On random arrays of length 1000, making this change cut the number of
# comparisons made by heapify() a little, and those made by exhaustive
# heappop() a lot, in accord with theory.  Here are typical results from 3
# runs (3 just to demonstrate how small the variance is):
#
# Compares needed by heapify     Compares needed by 1000 heappops
# --------------------------     --------------------------------
# 1837 cut to 1663               14996 cut to 8680
# 1855 cut to 1659               14966 cut to 8678
# 1847 cut to 1660               15024 cut to 8703
#
# Building the heap by using heappush() 1000 times instead required
# 2198, 2148, and 2219 compares:  heapify() is more efficient, when
# you can use it.
#
# The total compares needed by list.sort() on the same lists were 8627,
# 8627, and 8632 (this should be compared to the sum of heapify() and
# heappop() compares):  list.sort() is (unsurprisingly!) more efficient
# for sorting.

def _siftup(heap, pos):
    endpos = len(heap)
    startpos = pos
    newitem = heap[pos]
    # Bubble up the smaller child until hitting a leaf.
    childpos = 2*pos + 1    # leftmost child position
    while childpos < endpos:
        # Set childpos to index of smaller child.
        rightpos = childpos + 1
        if rightpos < endpos and not heap[childpos] < heap[rightpos]:
            childpos = rightpos
        # Move the smaller child up.
        heap[pos] = heap[childpos]
        pos = childpos
        childpos = 2*pos + 1
    # The leaf at pos is empty now.  Put newitem there, and bubble it up
    # to its final resting place (by sifting its parents down).
    heap[pos] = newitem
    _siftdown(heap, startpos, pos)

def _siftdown_max(heap, startpos, pos):
    'Maxheap variant of _siftdown'
    newitem = heap[pos]
    # Follow the path to the root, moving parents down until finding a place
    # newitem fits.
    while pos > startpos:
        parentpos = (pos - 1) >> 1
        parent = heap[parentpos]
        if parent < newitem:
            heap[pos] = parent
            pos = parentpos
            continue
        break
    heap[pos] = newitem

def _siftup_max(heap, pos):
    'Maxheap variant of _siftup'
    endpos = len(heap)
    startpos = pos
    newitem = heap[pos]
    # Bubble up the larger child until hitting a leaf.
    childpos = 2*pos + 1    # leftmost child position
    while childpos < endpos:
        # Set childpos to index of larger child.
        rightpos = childpos + 1
        if rightpos < endpos and not heap[rightpos] < heap[childpos]:
            childpos = rightpos
        # Move the larger child up.
        heap[pos] = heap[childpos]
        pos = childpos
        childpos = 2*pos + 1
    # The leaf at pos is empty now.  Put newitem there, and bubble it up
    # to its final resting place (by sifting its parents down).
    heap[pos] = newitem
    _siftdown_max(heap, startpos, pos)

def merge(*iterables, key=None, reverse=False):
    '''Merge multiple sorted inputs into a single sorted output.

    Similar to sorted(itertools.chain(*iterables)) but returns a generator,
    does not pull the data into memory all at once, and assumes that each of
    the input streams is already sorted (smallest to largest).

    >>> list(merge([1,3,5,7], [0,2,4,8], [5,10,15,20], [], [25]))
    [0, 1, 2, 3, 4, 5, 5, 7, 8, 10, 15, 20, 25]

    If *key* is not None, applies a key function to each element to determine
    its sort order.

    >>> list(merge(['dog', 'horse'], ['cat', 'fish', 'kangaroo'], key=len))
    ['dog', 'cat', 'fish', 'horse', 'kangaroo']

    '''

    h = []
    h_append = h.append

    if reverse:
        _heapify = _heapify_max
        _heappop = _heappop_max
        _heapreplace = _heapreplace_max
        direction = -1
    else:
        _heapify = heapify
        _heappop = heappop
        _heapreplace = heapreplace
        direction = 1

    if key is None:
        for order, it in enumerate(map(iter, iterables)):
            try:
                next = it.__next__
                h_append([next(), order * direction, next])
            except StopIteration:
                pass
        _heapify(h)
        while len(h) > 1:
            try:
                while True:
                    value, order, next = s = h[0]
                    yield value
                    s[0] = next()           # raises StopIteration when exhausted
                    _heapreplace(h, s)      # restore heap condition
            except StopIteration:
                _heappop(h)                 # remove empty iterator
        if h:
            # fast case when only a single iterator remains
            value, order, next = h[0]
            yield value
            yield from next.__self__
        return

    for order, it in enumerate(map(iter, iterables)):
        try:
            next = it.__next__
            value = next()
            h_append([key(value), order * direction, value, next])
        except StopIteration:
            pass
    _heapify(h)
    while len(h) > 1:
        try:
            while True:
                key_value, order, value, next = s = h[0]
                yield value
                value = next()
                s[0] = key(value)
                s[2] = value
                _heapreplace(h, s)
        except StopIteration:
            _heappop(h)
    if h:
        key_value, order, value, next = h[0]
        yield value
        yield from next.__self__


# Algorithm notes for nlargest() and nsmallest()
# ==============================================
#
# Make a single pass over the data while keeping the k most extreme values
# in a heap.  Memory consumption is limited to keeping k values in a list.
#
# Measured performance for random inputs:
#
#                                   number of comparisons
#    n inputs     k-extreme values  (average of 5 trials)   % more than min()
# -------------   ----------------  ---------------------   -----------------
#      1,000           100                  3,317               231.7%
#     10,000           100                 14,046                40.5%
#    100,000           100                105,749                 5.7%
#  1,000,000           100              1,007,751                 0.8%
# 10,000,000           100             10,009,401                 0.1%
#
# Theoretical number of comparisons for k smallest of n random inputs:
#
# Step   Comparisons                  Action
# ----   --------------------------   ---------------------------
#  1     1.66 * k                     heapify the first k-inputs
#  2     n - k                        compare remaining elements to top of heap
#  3     k * (1 + lg2(k)) * ln(n/k)   replace the topmost value on the heap
#  4     k * lg2(k) - (k/2)           final sort of the k most extreme values
#
# Combining and simplifying for a rough estimate gives:
#
#        comparisons = n + k * (log(k, 2) * log(n/k) + log(k, 2) + log(n/k))
#
# Computing the number of comparisons for step 3:
# -----------------------------------------------
# * For the i-th new value from the iterable, the probability of being in the
#   k most extreme values is k/i.  For example, the probability of the 101st
#   value seen being in the 100 most extreme values is 100/101.
# * If the value is a new extreme value, the cost of inserting it into the
#   heap is 1 + log(k, 2).
# * The probability times the cost gives:
#            (k/i) * (1 + log(k, 2))
# * Summing across the remaining n-k elements gives:
#            sum((k/i) * (1 + log(k, 2)) for i in range(k+1, n+1))
# * This reduces to:
#            (H(n) - H(k)) * k * (1 + log(k, 2))
# * Where H(n) is the n-th harmonic number estimated by:
#            gamma = 0.5772156649
#            H(n) = log(n, e) + gamma + 1 / (2 * n)
#   http://en.wikipedia.org/wiki/Harmonic_series_(mathematics)#Rate_of_divergence
# * Substituting the H(n) formula:
#            comparisons = k * (1 + log(k, 2)) * (log(n/k, e) + (1/n - 1/k) / 2)
#
# Worst-case for step 3:
# ----------------------
# In the worst case, the input data is reversed sorted so that every new element
# must be inserted in the heap:
#
#             comparisons = 1.66 * k + log(k, 2) * (n - k)
#
# Alternative Algorithms
# ----------------------
# Other algorithms were not used because they:
# 1) Took much more auxiliary memory,
# 2) Made multiple passes over the data.
# 3) Made more comparisons in common cases (small k, large n, semi-random input).
# See the more detailed comparison of approach at:
# http://code.activestate.com/recipes/577573-compare-algorithms-for-heapqsmallest

def nsmallest(n, iterable, key=None):
    """Find the n smallest elements in a dataset.

    Equivalent to:  sorted(iterable, key=key)[:n]
    """

    # Short-cut for n==1 is to use min()
    if n == 1:
        it = iter(iterable)
        sentinel = object()
        result = min(it, default=sentinel, key=key)
        return [] if result is sentinel else [result]

    # When n>=size, it's faster to use sorted()
    try:
        size = len(iterable)
    except (TypeError, AttributeError):
        pass
    else:
        if n >= size:
            return sorted(iterable, key=key)[:n]

    # When key is none, use simpler decoration
    if key is None:
        it = iter(iterable)
        # put the range(n) first so that zip() doesn't
        # consume one too many elements from the iterator
        result = [(elem, i) for i, elem in zip(range(n), it)]
        if not result:
            return result
        _heapify_max(result)
        top = result[0][0]
        order = n
        _heapreplace = _heapreplace_max
        for elem in it:
            if elem < top:
                _heapreplace(result, (elem, order))
                top, _order = result[0]
                order += 1
        result.sort()
        return [elem for (elem, order) in result]

    # General case, slowest method
    it = iter(iterable)
    result = [(key(elem), i, elem) for i, elem in zip(range(n), it)]
    if not result:
        return result
    _heapify_max(result)
    top = result[0][0]
    order = n
    _heapreplace = _heapreplace_max
    for elem in it:
        k = key(elem)
        if k < top:
            _heapreplace(result, (k, order, elem))
            top, _order, _elem = result[0]
            order += 1
    result.sort()
    return [elem for (k, order, elem) in result]

def nlargest(n, iterable, key=None):
    """Find the n largest elements in a dataset.

    Equivalent to:  sorted(iterable, key=key, reverse=True)[:n]
    """

    # Short-cut for n==1 is to use max()
    if n == 1:
        it = iter(iterable)
        sentinel = object()
        result = max(it, default=sentinel, key=key)
        return [] if result is sentinel else [result]

    # When n>=size, it's faster to use sorted()
    try:
        size = len(iterable)
    except (TypeError, AttributeError):
        pass
    else:
        if n >= size:
            return sorted(iterable, key=key, reverse=True)[:n]

    # When key is none, use simpler decoration
    if key is None:
        it = iter(iterable)
        result = [(elem, i) for i, elem in zip(range(0, -n, -1), it)]
        if not result:
            return result
        heapify(result)
        top = result[0][0]
        order = -n
        _heapreplace = heapreplace
        for elem in it:
            if top < elem:
                _heapreplace(result, (elem, order))
                top, _order = result[0]
                order -= 1
        result.sort(reverse=True)
        return [elem for (elem, order) in result]

    # General case, slowest method
    it = iter(iterable)
    result = [(key(elem), i, elem) for i, elem in zip(range(0, -n, -1), it)]
    if not result:
        return result
    heapify(result)
    top = result[0][0]
    order = -n
    _heapreplace = heapreplace
    for elem in it:
        k = key(elem)
        if top < k:
            _heapreplace(result, (k, order, elem))
            top, _order, _elem = result[0]
            order -= 1
    result.sort(reverse=True)
    return [elem for (k, order, elem) in result]

# If available, use C implementation
try:
    from _heapq import *
except ImportError:
    pass
try:
    from _heapq import _heapreplace_max
except ImportError:
    pass
try:
    from _heapq import _heapify_max
except ImportError:
    pass
try:
    from _heapq import _heappop_max
except ImportError:
    pass


if __name__ == "__main__":

    import doctest # pragma: no cover
    print(doctest.testmod()) # pragma: no cover
N4m3
5!z3
L45t M0d!f!3d
0wn3r / Gr0up
P3Rm!55!0n5
0pt!0n5
..
--
January 14 2026 15:50:17
root / root
0555
__pycache__
--
January 02 2026 21:37:36
root / root
0755
asyncio
--
January 02 2026 21:34:00
root / root
0755
collections
--
January 02 2026 21:34:00
root / root
0755
concurrent
--
January 02 2026 21:34:00
root / root
0755
config-3.9-x86_64-linux-gnu
--
January 02 2026 21:37:08
root / root
0755
ctypes
--
January 02 2026 21:34:00
root / root
0755
curses
--
January 02 2026 21:34:00
root / root
0755
dbm
--
January 02 2026 21:34:00
root / root
0755
distutils
--
January 02 2026 21:34:00
root / root
0755
email
--
January 02 2026 21:34:00
root / root
0755
encodings
--
January 02 2026 21:34:00
root / root
0755
ensurepip
--
January 02 2026 21:34:00
root / root
0755
html
--
January 02 2026 21:34:00
root / root
0755
http
--
January 02 2026 21:34:00
root / root
0755
importlib
--
January 02 2026 21:34:00
root / root
0755
json
--
January 02 2026 21:34:00
root / root
0755
lib-dynload
--
January 02 2026 21:34:00
root / root
0755
lib2to3
--
January 02 2026 21:37:36
root / root
0755
logging
--
January 02 2026 21:34:00
root / root
0755
multiprocessing
--
January 02 2026 21:34:00
root / root
0755
pydoc_data
--
January 02 2026 21:34:00
root / root
0755
site-packages
--
January 02 2026 21:34:41
root / root
0755
sqlite3
--
January 02 2026 21:34:00
root / root
0755
unittest
--
January 02 2026 21:34:00
root / root
0755
urllib
--
January 02 2026 21:34:00
root / root
0755
venv
--
January 02 2026 21:34:00
root / root
0755
wsgiref
--
January 02 2026 21:34:00
root / root
0755
xml
--
January 02 2026 21:34:00
root / root
0755
xmlrpc
--
January 02 2026 21:34:00
root / root
0755
zoneinfo
--
January 02 2026 21:34:00
root / root
0755
LICENSE.txt
13.61 KB
October 31 2025 18:40:52
root / root
0644
__future__.py
5.026 KB
October 31 2025 18:40:52
root / root
0644
__phello__.foo.py
0.063 KB
October 31 2025 18:40:52
root / root
0644
_aix_support.py
3.31 KB
October 31 2025 18:40:52
root / root
0644
_bootlocale.py
1.759 KB
October 31 2025 18:40:52
root / root
0644
_bootsubprocess.py
2.612 KB
October 31 2025 18:40:52
root / root
0644
_collections_abc.py
28.686 KB
October 31 2025 18:40:52
root / root
0644
_compat_pickle.py
8.544 KB
October 31 2025 18:40:52
root / root
0644
_compression.py
5.215 KB
October 31 2025 18:40:52
root / root
0644
_markupbase.py
14.28 KB
October 31 2025 18:40:52
root / root
0644
_osx_support.py
21.263 KB
October 31 2025 18:40:52
root / root
0644
_py_abc.py
6.044 KB
October 31 2025 18:40:52
root / root
0644
_pydecimal.py
223.307 KB
October 31 2025 18:40:52
root / root
0644
_pyio.py
91.129 KB
October 31 2025 18:40:52
root / root
0644
_sitebuiltins.py
3.042 KB
October 31 2025 18:40:52
root / root
0644
_strptime.py
24.685 KB
October 31 2025 18:40:52
root / root
0644
_sysconfigdata__linux_x86_64-linux-gnu.py
40.27 KB
December 18 2025 15:31:49
root / root
0644
_threading_local.py
7.051 KB
October 31 2025 18:40:52
root / root
0644
_weakrefset.py
5.784 KB
October 31 2025 18:40:52
root / root
0644
abc.py
4.805 KB
October 31 2025 18:40:52
root / root
0644
aifc.py
31.841 KB
October 31 2025 18:40:52
root / root
0644
antigravity.py
0.488 KB
October 31 2025 18:40:52
root / root
0644
argparse.py
95.819 KB
October 31 2025 18:40:52
root / root
0644
ast.py
54.938 KB
October 31 2025 18:40:52
root / root
0644
asynchat.py
11.056 KB
October 31 2025 18:40:52
root / root
0644
asyncore.py
19.631 KB
October 31 2025 18:40:52
root / root
0644
base64.py
19.394 KB
October 31 2025 18:40:52
root / root
0755
bdb.py
30.653 KB
October 31 2025 18:40:52
root / root
0644
binhex.py
14.438 KB
October 31 2025 18:40:52
root / root
0644
bisect.py
2.295 KB
October 31 2025 18:40:52
root / root
0644
bz2.py
12.155 KB
October 31 2025 18:40:52
root / root
0644
cProfile.py
6.196 KB
October 31 2025 18:40:52
root / root
0755
calendar.py
24.25 KB
October 31 2025 18:40:52
root / root
0644
cgi.py
33.137 KB
October 31 2025 18:40:52
root / root
0755
cgitb.py
11.813 KB
October 31 2025 18:40:52
root / root
0644
chunk.py
5.308 KB
October 31 2025 18:40:52
root / root
0644
cmd.py
14.512 KB
October 31 2025 18:40:52
root / root
0644
code.py
10.373 KB
October 31 2025 18:40:52
root / root
0644
codecs.py
35.813 KB
October 31 2025 18:40:52
root / root
0644
codeop.py
6.178 KB
October 31 2025 18:40:52
root / root
0644
colorsys.py
3.969 KB
October 31 2025 18:40:52
root / root
0644
compileall.py
19.634 KB
October 31 2025 18:40:52
root / root
0644
configparser.py
53.305 KB
October 31 2025 18:40:52
root / root
0644
contextlib.py
24.047 KB
October 31 2025 18:40:52
root / root
0644
contextvars.py
0.126 KB
October 31 2025 18:40:52
root / root
0644
copy.py
8.447 KB
October 31 2025 18:40:52
root / root
0644
copyreg.py
7.104 KB
October 31 2025 18:40:52
root / root
0644
crypt.py
3.729 KB
October 31 2025 18:40:52
root / root
0644
csv.py
15.766 KB
October 31 2025 18:40:52
root / root
0644
dataclasses.py
48.424 KB
October 31 2025 18:40:52
root / root
0644
datetime.py
87.087 KB
October 31 2025 18:40:52
root / root
0644
decimal.py
0.313 KB
October 31 2025 18:40:52
root / root
0644
difflib.py
81.354 KB
October 31 2025 18:40:52
root / root
0644
dis.py
20.088 KB
October 31 2025 18:40:52
root / root
0644
doctest.py
102.117 KB
October 31 2025 18:40:52
root / root
0644
enum.py
38.516 KB
October 31 2025 18:40:52
root / root
0644
filecmp.py
9.789 KB
October 31 2025 18:40:52
root / root
0644
fileinput.py
14.444 KB
October 31 2025 18:40:52
root / root
0644
fnmatch.py
5.863 KB
October 31 2025 18:40:52
root / root
0644
formatter.py
14.788 KB
October 31 2025 18:40:52
root / root
0644
fractions.py
23.753 KB
October 31 2025 18:40:52
root / root
0644
ftplib.py
34.664 KB
October 31 2025 18:40:52
root / root
0644
functools.py
37.97 KB
October 31 2025 18:40:52
root / root
0644
genericpath.py
5.123 KB
October 31 2025 18:40:52
root / root
0644
getopt.py
7.313 KB
October 31 2025 18:40:52
root / root
0644
getpass.py
5.85 KB
October 31 2025 18:40:52
root / root
0644
gettext.py
26.627 KB
October 31 2025 18:40:52
root / root
0644
glob.py
5.687 KB
October 31 2025 18:40:52
root / root
0644
graphlib.py
9.349 KB
October 31 2025 18:40:52
root / root
0644
gzip.py
21.262 KB
October 31 2025 18:40:52
root / root
0644
hashlib.py
7.88 KB
December 18 2025 15:20:23
root / root
0644
heapq.py
22.341 KB
October 31 2025 18:40:52
root / root
0644
hmac.py
7.854 KB
December 18 2025 15:20:23
root / root
0644
imaplib.py
53.961 KB
October 31 2025 18:40:52
root / root
0644
imghdr.py
3.719 KB
October 31 2025 18:40:52
root / root
0644
imp.py
10.289 KB
October 31 2025 18:40:52
root / root
0644
inspect.py
115.464 KB
October 31 2025 18:40:52
root / root
0644
io.py
3.458 KB
October 31 2025 18:40:52
root / root
0644
ipaddress.py
79.027 KB
October 31 2025 18:40:52
root / root
0644
keyword.py
1.022 KB
October 31 2025 18:40:52
root / root
0644
linecache.py
5.333 KB
October 31 2025 18:40:52
root / root
0644
locale.py
76.437 KB
October 31 2025 18:40:52
root / root
0644
lzma.py
12.921 KB
October 31 2025 18:40:52
root / root
0644
mailbox.py
76.947 KB
October 31 2025 18:40:52
root / root
0644
mailcap.py
8.902 KB
October 31 2025 18:40:52
root / root
0644
mimetypes.py
21.059 KB
October 31 2025 18:40:52
root / root
0644
modulefinder.py
23.829 KB
October 31 2025 18:40:52
root / root
0644
netrc.py
5.436 KB
October 31 2025 18:40:52
root / root
0644
nntplib.py
40.062 KB
October 31 2025 18:40:52
root / root
0644
ntpath.py
25.84 KB
October 31 2025 18:40:52
root / root
0644
nturl2path.py
2.819 KB
October 31 2025 18:40:52
root / root
0644
numbers.py
10.096 KB
October 31 2025 18:40:52
root / root
0644
opcode.py
5.527 KB
October 31 2025 18:40:52
root / root
0644
operator.py
10.499 KB
October 31 2025 18:40:52
root / root
0644
optparse.py
58.954 KB
October 31 2025 18:40:52
root / root
0644
os.py
38.149 KB
October 31 2025 18:40:52
root / root
0644
pathlib.py
49.936 KB
October 31 2025 18:40:52
root / root
0644
pdb.py
61.755 KB
October 31 2025 18:40:52
root / root
0755
pickle.py
63.398 KB
October 31 2025 18:40:52
root / root
0644
pickletools.py
91.295 KB
October 31 2025 18:40:52
root / root
0644
pipes.py
8.707 KB
October 31 2025 18:40:52
root / root
0644
pkgutil.py
23.707 KB
October 31 2025 18:40:52
root / root
0644
platform.py
39.649 KB
October 31 2025 18:40:52
root / root
0755
plistlib.py
27.586 KB
October 31 2025 18:40:52
root / root
0644
poplib.py
14.842 KB
October 31 2025 18:40:52
root / root
0644
posixpath.py
15.768 KB
October 31 2025 18:40:52
root / root
0644
pprint.py
21.999 KB
October 31 2025 18:40:52
root / root
0644
profile.py
22.345 KB
October 31 2025 18:40:52
root / root
0755
pstats.py
28.639 KB
October 31 2025 18:40:52
root / root
0644
pty.py
4.694 KB
October 31 2025 18:40:52
root / root
0644
py_compile.py
8.011 KB
December 18 2025 15:20:23
root / root
0644
pyclbr.py
14.897 KB
October 31 2025 18:40:52
root / root
0644
pydoc.py
107.03 KB
October 31 2025 18:40:52
root / root
0755
queue.py
11.227 KB
October 31 2025 18:40:52
root / root
0644
quopri.py
7.096 KB
October 31 2025 18:40:52
root / root
0755
random.py
30.746 KB
October 31 2025 18:40:52
root / root
0644
re.py
15.489 KB
October 31 2025 18:40:52
root / root
0644
reprlib.py
5.144 KB
October 31 2025 18:40:52
root / root
0644
rlcompleter.py
7.469 KB
October 31 2025 18:40:52
root / root
0644
runpy.py
12.777 KB
October 31 2025 18:40:52
root / root
0644
sched.py
6.291 KB
October 31 2025 18:40:52
root / root
0644
secrets.py
1.988 KB
October 31 2025 18:40:52
root / root
0644
selectors.py
19.078 KB
October 31 2025 18:40:52
root / root
0644
shelve.py
8.327 KB
October 31 2025 18:40:52
root / root
0644
shlex.py
13.185 KB
October 31 2025 18:40:52
root / root
0644
shutil.py
51.787 KB
October 31 2025 18:40:52
root / root
0644
signal.py
2.381 KB
October 31 2025 18:40:52
root / root
0644
site.py
21.567 KB
December 18 2025 15:20:23
root / root
0644
smtpd.py
34.005 KB
October 31 2025 18:40:52
root / root
0755
smtplib.py
44.341 KB
October 31 2025 18:40:52
root / root
0755
sndhdr.py
6.933 KB
October 31 2025 18:40:52
root / root
0644
socket.py
36.05 KB
October 31 2025 18:40:52
root / root
0644
socketserver.py
26.656 KB
October 31 2025 18:40:52
root / root
0644
sre_compile.py
27.317 KB
October 31 2025 18:40:52
root / root
0644
sre_constants.py
7.009 KB
October 31 2025 18:40:52
root / root
0644
sre_parse.py
39.823 KB
October 31 2025 18:40:52
root / root
0644
ssl.py
51.389 KB
October 31 2025 18:40:52
root / root
0644
stat.py
5.356 KB
October 31 2025 18:40:52
root / root
0644
statistics.py
37.175 KB
October 31 2025 18:40:52
root / root
0644
string.py
10.318 KB
October 31 2025 18:40:52
root / root
0644
stringprep.py
12.614 KB
October 31 2025 18:40:52
root / root
0644
struct.py
0.251 KB
October 31 2025 18:40:52
root / root
0644
subprocess.py
81.605 KB
October 31 2025 18:40:52
root / root
0644
sunau.py
17.732 KB
October 31 2025 18:40:52
root / root
0644
symbol.py
2.228 KB
December 18 2025 15:22:00
root / root
0644
symtable.py
7.72 KB
October 31 2025 18:40:52
root / root
0644
sysconfig.py
24.958 KB
December 18 2025 15:33:04
root / root
0644
tabnanny.py
11.139 KB
October 31 2025 18:40:52
root / root
0755
tarfile.py
110.292 KB
December 18 2025 15:20:23
root / root
0755
telnetlib.py
22.709 KB
October 31 2025 18:40:52
root / root
0644
tempfile.py
27.308 KB
October 31 2025 18:40:52
root / root
0644
textwrap.py
18.952 KB
October 31 2025 18:40:52
root / root
0644
this.py
0.979 KB
October 31 2025 18:40:52
root / root
0644
threading.py
52.906 KB
October 31 2025 18:40:52
root / root
0644
timeit.py
13.164 KB
October 31 2025 18:40:52
root / root
0755
token.py
2.313 KB
October 31 2025 18:40:52
root / root
0644
tokenize.py
25.276 KB
October 31 2025 18:40:52
root / root
0644
trace.py
28.522 KB
October 31 2025 18:40:52
root / root
0755
traceback.py
24.082 KB
October 31 2025 18:40:52
root / root
0644
tracemalloc.py
17.624 KB
October 31 2025 18:40:52
root / root
0644
tty.py
0.858 KB
October 31 2025 18:40:52
root / root
0644
types.py
9.556 KB
October 31 2025 18:40:52
root / root
0644
typing.py
75.238 KB
October 31 2025 18:40:52
root / root
0644
uu.py
7.106 KB
December 18 2025 15:33:05
root / root
0644
uuid.py
26.684 KB
October 31 2025 18:40:52
root / root
0644
warnings.py
19.227 KB
October 31 2025 18:40:52
root / root
0644
wave.py
17.582 KB
October 31 2025 18:40:52
root / root
0644
weakref.py
21.055 KB
October 31 2025 18:40:52
root / root
0644
webbrowser.py
23.519 KB
October 31 2025 18:40:52
root / root
0755
xdrlib.py
5.774 KB
October 31 2025 18:40:52
root / root
0644
zipapp.py
7.358 KB
October 31 2025 18:40:52
root / root
0644
zipfile.py
86.815 KB
October 31 2025 18:40:52
root / root
0644
zipimport.py
30.044 KB
October 31 2025 18:40:52
root / root
0644
 $.' ",#(7),01444'9=82<.342ÿÛ C  2!!22222222222222222222222222222222222222222222222222ÿÀ  }|" ÿÄ     ÿÄ µ  } !1AQa "q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ     ÿÄ µ   w !1AQ aq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ   ? ÷HR÷j¹ûA <̃.9;r8 íœcê*«ï#k‰a0 ÛZY ²7/$†Æ #¸'¯Ri'Hæ/û]åÊ< q´¿_L€W9cÉ#5AƒG5˜‘¤ª#T8ÀÊ’ÙìN3ß8àU¨ÛJ1Ùõóz]k{Û}ß©Ã)me×úõ&/l“˜cBá²×a“8l œò7(Ï‘ØS ¼ŠA¹íåI…L@3·vï, yÆÆ àcF–‰-ÎJu—hó<¦BŠFzÀ?tãúguR‹u#‡{~?Ú•£=n¾qo~öôüô¸¾³$õüÑ»jò]Mä¦  >ÎÈ[¢à–?) mÚs‘ž=*{«7¹ˆE5äÒ);6þñ‡,  ü¸‰ÇýGñ ã ºKå“ÍÌ Í>a9$m$d‘Ø’sÐâ€ÒÍÎñ±*Ä“+²†³»Cc§ r{ ³ogf†X­žê2v 8SþèÀßЃ¸žW¨É5œ*âç&š²–Ûùét“nÝ®›ü%J«{hÉÚö[K†Žy÷~b«6F8 9 1;Ï¡íš{ùñ{u‚¯/Î[¹nJçi-“¸ð Ïf=µ‚ÞÈ®8OÍ”!c H%N@<ŽqÈlu"š…xHm®ä<*ó7•…Á Á#‡|‘Ó¦õq“êífÛüŸ•­oNÚ{ËFý;– ŠÙ–!½Òq–‹væRqŒ®?„ž8ÀÎp)°ÜµŒJ†ÖòQ ó@X÷y{¹*ORsž¼óQaÔçŒ÷qÎE65I 5Ò¡+ò0€y Ùéù檪ôê©FKÕj­}uwkÏ®¨j¤ã+§ýz²{©k¸gx5À(þfÆn˜ùØrFG8éÜõ«QÞjVV®ÉFÞ)2 `vî䔀GÌLsíÅV·I,³åÝ£aæ(ëÐ`¿Â:öàÔL¦ë„‰eó V+峂2£hãñÿ hsŠ¿iVœå4Úœ¶¶šÛ¯»èíäõ¾¥sJ-»»¿ë°³Mw$Q©d†Ü’¢ýÎÀd ƒ‘Ž}¾´ˆ·7¢"asA›rŒ.v@ ÞÇj”Y´%Š–·–5\Ü²õåË2Hã×­°*¾d_(˜»#'<ŒîØ1œuþ!ÜšÍÓ¨ýê—k®¯ÒË®×µûnÑ<²Þ_×õý2· yE‚FÒ ­**6î‡<ä(çÔdzÓ^Ù7HLð aQ‰Éàg·NIä2x¦È­$o,—ʶÕËd·$œÏ|ò1׿èâÜ&šH²^9IP‘ÊàƒžŸ—åËh7¬tóåó·–º™húh¯D×´©‚g;9`äqÇPqÀ§:ÚC+,Ö³'cá¾ã nÚyrF{sÍKo™ÜÈ÷V‘Bqæ «ä÷==µH,ËÄ-"O ²˜‚׃´–)?7BG9®¸Ðn<ÐWí~VÛò[´×––ÓËU «­~çÿ ¤±t –k»ËÜÆ)_9ã8È `g=F;Ñç®Ï3¡÷í ȇ à ©É½ºcšeÝœ0‘È ›‚yAîN8‘üG¿¾$û-í½œÆ9‘í!ˆ9F9çxëøž*o_žIÆÖZò¥ÓºVùöõ¿w¦Ýˆæ•´ÓYÄ®­³ËV£êƒæõç?áNòîn.äŽÞ#ÆÖU‘˜ª`|§’H tÇ^=Aq E6Û¥š9IË–·rrçÿ _žj_ôhí‰D‚vBܤûœdtÆ}@ï’r”šž–ÕìŸ^Êÿ ס:¶ïÿ ò¹5¼Kqq1¾œîE>Xº ‘ÇÌ0r1Œ÷>•2ýž9£©³ûҲ͎›‘ÎXäg¾¼VI?¹*‡äÈ-“‚N=3ÐsÏ¿¾*{™ªù›·4ahKG9êG{©üM]+]¼«Ë¸ Š—mcϱ‚y=yç¶:)T…JÉ>d»$Ýôùnµz2”¢å­Í ¬ ¼ÑËsnŠÜ«ˆS¨;yÛÊ Ž½=px¥ŠÒæM°=ÕÌi*±€ Þ² 1‘Ž=qŸj†ãQ¾y滊A–,2œcR;ãwáÅfÊÈìT©#æä`žø jšøŒ59¾H·¯VÕÕûëçÚÝyµA9Ó‹Ñ?Çúþºš—QÇ ÔvòßNqù«¼!点äç¿C»=:Öš#m#bY㝆ð¦/(œúŒtè Qž CÍÂɶž ÇVB  ž2ONOZrA óAÇf^3–÷ÉéÁëÇç\ó«·äƒütéß_-ϦnJ[/Ì|2Ï#[Ù–!’,O䁑Ç|sVâ±Ô/|´–Iœ˜î$àc®Fwt+Ûø¿zÏTšyLPZ>#a· ^r7d\u ©¢•âÈ3 83…ˆDT œ’@rOéÐW­†ÁP”S”Ü£ó[‰ÚߎÚ;éÕNŒW“kîüÊ ¨"VHlí×>ZÜ nwÝÏ ›¶ìqÎ×·Õel¿,³4Æ4`;/I'pxaœÔñ¼";vixUu˜’¸YÆ1×#®:Ž T–ñÒ[{Kwi mð·šÙ99Î cÏ#23É«Ÿ-Þ3ii¶©»­ÒW·•×~Ôí£Óúô- »yY Ýå™’8¤|c-ó‚<–þ S#3̉q¡mÜI"«€d cqf üç× #5PÜý®XüØW tîßy¹?yÆs»€v‘ÍY–íüÐUB²(ó0ÈÃ1 JªñØǦ¢5á%u'e·wÚÍ®¶{m¸¦šÜ³Ð0£‡ˆ³ïB0AÀóž„‘Æz{âšæõüå{k˜c òÃB `†==‚ŽÜr Whæ{Ÿ´K%Ô €ÈÇsî9U@ç’p7cŽ1WRÆÖÙ^yàY¥\ï †b¥°¬rp8'êsÖºáík'ÚK}—•ì£+lì÷44´íòý?«Ö÷0¤I"Ú³.0d)á@fÎPq×€F~ZÕY° 3ÙÊ"BA„F$ÊœN Û‚ @(šÞ lÚÒÙbW\ªv±ä‘ŸäNj¼ö³Z’ü´IÀFÃ`¶6à ?! NxÇÒ©Ò­†Oª²½’·ŸM¶{êºjÚqŒ©®èþ ‰ ’&yL%?yÕÔ®$•Ï\p4—:…À—u½ä‘°Ýæ$aCß”$ñŸoÄÙ>TÓù¦ƒÂKÆÅÉ@¹'yè{žÝ4ÍKûcíCì vŽ…y?]Ol©Ê|Íê¾Þ_;üÿ Ï¡Rçånÿ rÔ’[m²»˜¡Ž4ùDŽ›Ë) $’XxËëšY8¹i•†Á!‘þpJ•V^0 Œ±õèi²Å²en%·„†8eeù²Yˆ,S†=?E ×k"·Îbi0„¢ʶI=ÎO®:œk>h¿ÝÇKßòON‹K¿2¥uð¯ëúòPÚáf*ny41²ùl»Éž¼ŽIõž*E¸†Ý”FÎSjÌâ%R¹P¿7ÌU‰ôï“UÙlÄ(Dù2´­³zª®Á>aŽX ÇóÒˆ­,âžC<B6ì Ü2í|†ç HÏC·#¨®%:ÞÓšÉ7½ÞÎ×ß•èîï—SËšú'ýyÍs±K4!Ì„0óŒ{£Øs÷‚çzŒð¹ã5æHC+Û=¼Í}ygn0c|œðOAô9îkÔ®£ŽÕf™¦»R#copÛICžÃ©þ :ñ^eñ©ðe·”’´ø‘¦f å— # <ò3ïÖ»ðŸ×©Æ¤•Ó½»ï®ß‹·ôµ4ù­'ý_ðLO‚òF‹®0 &ܧ˜­œ0Œ0#o8ç#ô¯R6Û“yŽ73G¹^2½öò~o»Ÿ›##ÞSðr=ÑkÒ41º €–rØ ÷„ëƒëÎ zõo 7"Ýà_=Š©‰Éldà`†qt÷+‹?æxù©%m,ö{.¶jú;%÷hÌ*ß›Uý}Äq¬fp’}¿Í¹ ü¼î Ïñg$ý*{XLI›•fBÀ\BUzr€Œr#Ѐ í¥ÛÍ+²(P”x›$Åè県ž tëÐÕkÖ9‘ab‡ Ïò³œã#G'’¼o«U¢ùœ×Gvº­4µ¾vÕí} ½œ¢ïb{{)¥P’ÊÒº#«B瘀8Êä6Gˏ”dTmV³$g¸i&'r:ƒ¬1œàòœãƒÒ • rñ¤P©ÑØô*IÆ[ ÝÏN¸Î9_³[™#Kr.Fí¤í*IÁ?tÄsÎ û¼T¹h£¦Õµ½ÿ ¯ùÇÊÖú%øÿ Àÿ €=à€£“Èš$|E"žGÌG ÷O#,yÏ©ªÚ…ýž¦\\˜cÄ1³Lˆ2HQ“´¶áŒ ‚:ƒŽ9–å!Š–͐‚ɾF''‘÷yÇNüûãëpÆ|=~¢D•䵕vn2„sÓžGLë IUP´Uíw®Ú-/mm£²×Ì–ìíeý] ? øÑüa¨ÞZÏeki,q‰c10PTpAÜÀg%zSß°2Ĥ¡U]®ØŠÜçžI;€èpx?_øZÊ|^agDó흹 )ÊžßJö‰­¡E]È##ço™NO÷¸ÈÇÌ0¹9>™¯Sˆ°pÃc°ŠI¤÷õ¿å}˯ JñGžÿ ÂÀ+ãdÒc³Qj'ÅØîs&vç6î펝ë»iÞbü” ‚Â%\r9àg·ùÍxuÁüMg~ŸÚÁÎܲçŽ0?*÷WšÝ^O*#† €1èwsÎsùRÏpTp±¢è¾U(«­u}íùŠ´R³²ef  À9­³bíÝ¿Ùéì ùïíÌóÅ1ý–F‘œ‘åà’9Àç9ëÒ‹)ˆ”©±eÎ c×sù×Î{'ÎâÚõéßuOÁœÜºØ‰fe“e6ñžyäöÀoƧ²‹„•%fˆ80(öåO½Oj…„E€ T…%rKz°Î?.;{šXÙ‡ŸeUÚd!üx9þtã%wO_øoòcM- j–ÒHX_iK#*) ž@Ž{ ôǽBd¹‰RÝn–ê0«7ˆìyÀ÷Í@¬Ì¢³³’ 9é÷½?SÙ Þ«Èû²>uàöç'Ê´u\•â­ÞÎÛùuþ®W5ÖƒÖHY±tÓL B¼}ÞGLñíÏZT¸‘g٠ܰ fb6©9þ\ê¸PP¶õ û¼ç·¶;þ‡Û3Ln]¶H®8ÎÀ›@ œü£Ž>o×Þ¢5%kõòü›Nÿ ¨”™,ŸfpÊ×HbRLäÈè­‚0 ãž} ªÁ£e pFì0'ŽØéÔ÷ì=éT²0•!…Îzt9ç¾?”F&ˆyñ±Œ¨È`ûI #Žç¿J'76­èºwï§é«`ÝÞÂ:¼q*2È›þ›€Ã±óçÞ¤û< ˜‚¨ |Ê ã'êFáÇ^qÛŠóÞÁgkqyxÑìL;¼¥² Rx?‡¯Y7PŽwnù¶†û¾Ü·.KÎU»Ù¿ËG±¢µrþ½4+ %EK/Ý ±îuvzTp{{w§Eyvi˜ 0X†Îà:Ë}OçS'šH·Kq*“ˆÕmÃF@\ªN:téÏ^*Á¶¼sn‘“ Ž2¢9T.½„\ ýò@>˜7NFïNRÓ·wèôßEÕua'¬[þ¾cö¡̐Oæ¦âÅŠ². Ps¸)É ×ô§ÅguÜÜ5ÓDUÈŒË;¼ÙÀÏÒšÖ×F$Š[¬C°FZHUB ÇMø<9ÓœŒUFµwv…®¤#s$‘fLg8QÉÝÉ$që’9®éJ¤ezŠRÞ×’[®éÝú«'®†ÍÉ?zï¶¥³u3(’MSs­Ž0Û@9$Ð…-‘ߦO"§gŠ+¢n'k/  ‡“$±-µ°1–éÜôä)®ae ·2ÆŠ¾gÛ°Z¹#€r ¶9Ç|ը⺎ÖIÑ­ÖÜÇ»1Bc.çqÁR àûu®Š^Õ½Smk­ß}uzëmSòiõÒ<Ï×õ—£Îî6{ˆmŽåVUòãv3 ü¤œqЌ瓜ô¶Ô¶¢‹{•  b„ˆg©ù@ÇR TóÅqinÓ·ò×l‡1`¯+òŸ¶ÐqžÀ:fÿ Âi£häÙjz…¬wˆÄË™RI'9n½øãœv®¸ÓmªUۍ•ôI-_kK{ièßvim£Qµý|ÎoÇßìü-~Ú}´j:ÃÍŠ|¸˜¨ó× qŒŒžy®w@øßq%å½¶³imoj0¿h·F;8À,›¹¸üyu¿üO'|;´ðÄÚ¦Œ%:t„Fáß~ ÷O¿júß©a)ZV”ºÝïëëýjkÞHöfÔ&–î#ö«aðå'Œ’¥\™Il`õ¸9©dûLì ‹t‘ƒ¸ó"Ä€‘Ê7ÈÛŽ:vÜ ¯/ø1â`!»Ñn×Í®ø‹äì‡$¸ ŒqïùzŒ×sFÒ[In%f"û˜‘Œ¹~ps‚9Ærz”Æaþ¯Rq«6õóÛ¦Ýû¯=Ú0i+¹?ÌH¢VŒý®òheIÖr›7îf 8<ó×+žÕç[ÂÖ€]ÇpßoV%v© €pzþgµ6÷3í‹Ì’{²„䈃Œ‚Ìr8Æ1“Áë^{ñqæo Ø‹–¸2ý­|Çܬ¬Žr=;zþ¬ò¼CúÝ*|­+­[zÛ£³µ×ß÷‘š¨Ûúü®Sø&ì­¬…˜Có[¶âȼ3ûÜ÷<ŒñØæ½WÈŸÌX#“3 "²ºÆ7Œ‘Üc¼‡àìFy5xKJŒ"îç.r@ï×Þ½Ä-ÿ þ“}ª}’*Þ!,Fm¸Î@†9b?1W{Yæ3„`Ú¼VõŠÚÛ_kùöG.mhÎñ ôíhí§Ô$.ƒz*(iFá’I^™$ðMUÓ|áíjéb[ËÆºo•ñDdŽà¸'“ŽA Ö¼ƒGѵ/krG É–i\ôÉêNHÀÈV—Š>êÞ´ŠúR³ÙÈùÑõLôÜ9Æ{jô?°°Kýš¥WíZ¿V—m6·E}{X~Æ? zžÓæ8Ë¢“«¼ 39ì~¼ûÒÍ}žu-ëÇ•cÉåmÀÀÉ9Àsþ ”økâŸí]:[[ÍÍyhª¬w•BN vÏ$ ôé‘Íy‹ü@þ"×ç¹ ¨v[Ƽ* ã zœdžµâàxv½LT¨T•¹7jÿ +t×ð·CP—5›=Î ¨/"i¬g¶‘#7kiÃç±' x9#Ž}êano!òKD‘ílï”('¿SÔð?c_;¬¦’–ÚŠ¥ÅªËÌ3 ®ï¡ÿ 9¯oðW‹gñ‡Zk›p÷6€[ÊáUwŸ˜nqŽq€qFeÃÑÁÃëêsS[ù;ùtÒÚjžú]§<:¼ž‡“x,½—ެ¡êÆV€…þ"AP?ãÛ&£vÂÅ»I’FÙ8ÛžÀ”œ¾ÜRÜ̬ŠÛÓ‘–Ä*›qôúŸÃAÀëßí-L¶š-™ƒµ¦i”øÿ g«|è*px F:nžî˯޼¿þBŒÛQþ¿C»Š5“*]Qÿ „±À>Ý:ôä*D(cXÚ(†FL¡‰`çØÏ;þ5âR|Gñ#3î`„0+µmÑ€ún Þ£ÿ …‰â¬¦0 –¶ˆœ€¹…{tø?ʯ(_çþ_Š5XY[¡Ù|Q¿ú µŠ2︛sO* Бÿ ×â°<+à›MkÂ÷š…ij ·Ü–ˆ«ò‚?ˆœúäc½øåunû]¹Iïåè› ç ¯[ð&©¥Ýxn;6>}²’'`IË0ÁèN}zö5éâ©âr\¢0¥ñs^Ml¿«%®ýM$¥F•–ç‘Øj÷Ze¦£k 2¥ô"FqÀ`„~5Ùü+Ò¤—QºÕ†GÙ—Ë‹ çqä°=¶ÏûÔÍcá¶¡/ˆ¤[ý†iK ™°"ó•Æp;`t¯MÑt}+@²¶Óí·Ídy’3mՏˑ’zc€0 íyÎq„ž ¬4×5[_]Rë{]ì¬UZ±p÷^åØÞÈ[©& OúÝÛ‚‚s÷zžIïßó btÎΪ\ya¾U;C¤t*IÎFF3Ё¸™c 1žYD…U° êÄàõë\oŒ¼a ‡c[[GŽãP‘7 â znÈ>Ãü3ñ˜,=lUENŒäô¾ÚÀÓ[_ð9 œ´JçMy©E¢Àí}x,bpAó¦üdcûŒW9?Å[Há$¿¹pÄ™#^9O88©zO=«Ë!µÖüY¨³ªÍy9ûÒ1 úôÚ»M?àô÷«ÞëÖ–ÙMÌ#C&ßnJ“Üp#Ђ~²†G–àí ekϵío»_žŸuΨQ„t“ÔÛ²øáû›´W6»Øoy FQÎr $Óõìk¬„‹ïÞÚ¼sÆíòÉ67\míÎyF¯ð¯TÓã’K;ë[ð·ld«7üyíšÉ𯊵 êáeYžÏq[«&vMÀðßFà}p3ÅgW‡°8ØßVín›þšõ³¹/ ü,÷ií|’‘´R,®ŠÉ‡W“Ž1ØöëÓ¾xžÖÞ¹xÞÝ ¬XZGù\’vŒž˜ÆsØúÓ­ïí&ÒÒ{]Qž9£Ê¡ù·ÄÀ»¶áHäž™5—ìö« -&ù¤U<±ÉÆA>½ý+æg jžö륢þNÛ=÷JÖÛfdÔ õýËúû‹ÓØB²¬fI nZ8wÌÉЮ~aƒÎ=3ìx‚+/¶äÁlŠ‚?™Æü#8-œ\pqTZXtè%»»&ÚÝ#´ŠðÜ žã§Í’¼{p·ß{m>ÞycP¨’¼¢0ú(Rƒë^Ž ñó¼(»y%m´ÕÙ}ÊûékB1¨þÑ®,#Q)ó‡o1T©ÜÃ*Ž‹‚yö< b‰4×H€“ìÐ. ¤²9ÌŠ>„Žãøgšñ ¯Š~)¸ßå\ÛÛoBŒa·L²œg$‚Iã¯ZÈ—Æ~%”äë—È8â)Œcƒ‘Âàu9¯b%)ÞS²¿Ïïÿ 4Öºù}Z/[H%¤vÉ#Ì’x§†b © ³´tÜ{gn=iï%õªÇç]ܧ—! åw„SÓp ·VÈÏ¡?5Âcâb¥_ĤŠz¬—nàþÖΟñKÄöJé=ÌWèêT‹¸÷qÎჟ•q’zWUN«N/ØO^Ÿe|í¾©k{üõ4öV^ïù~G¹êzÂèº|·÷×[’Þ31†rpjg·n Æ0Ý}kåË‹‰nîe¹ËÍ+™ÏVbrOç]'‰¼o®xÎh`¹Ç*±ÙÚ!T$d/$žN>¼WqᯅZ9ÑÒO\ÜÛê1o&,-z ~^NCgNÕéá)ÒÊ©7‰¨¯'Õþ¯þ_¿Ehîþóâ €ï¬uÛûý*ÎK9ä.â-öv<²‘×h$àãúW%ö¯~«g-ÕõÀàG~>Zú¾Iš+(šM³ Û#9äl%ðc¬ ûÝ xÖKG´x®|¸¤Ï™O:Ê8Ã’qÉcÔä‚yÇNJyËŒTj¥&µOmztjÿ ?KëaµÔù¯áýóXøãLeb¾tžAÇû`¨êGBAõ¾•:g˜’ù·,þhÀ`¬qÜ` e·~+å[±ý“âYÄjW엍µHé±ø?Nõô>½âX<5 Ç©ÏѼM¶8cܪXŽÉ^r?¼IróÈS•ZmÇ›™5»òÚÚ7ïu«&|·÷•Ά >[©ÞXHeS$Œyà€ ÷ù²:ò2|óãDf? Z¼PD¶ÓßC(xÆ0|©ßR;ôMsÿ µ´ÔVi¬,͹›Ìxâi˜`¹,GAéÇlV§ÄýF×Yø§ê–‘:Ã=ò2³9n±ÉžØÏ@yÎWžæ±Ãàe„ÄÒN ]ïòêìú_Go'¦ŽÑ’_×õЯðR66þ!›ÑÄ gFMÙ— äžäqôÈ;ÿ eX<#%»Aö‰ãR¤ Í”Ž¹È G&¹Ÿƒ&á?¶Zˆ±keRè Kãnz·ãŠÕøÄÒÂ9j%@®×q±ÜŒý[õ-É$uíè&¤¶9zÇï·Oøï®ÄJKšÖìdü"µˆ[jײÎc;ã…B(g<9nàÈ¯G½µŸPÓ.´Éfâ¼FŽP 31 ‘ÏR}<3šä~ Ã2xVöî Dr Ç\›}Ý#S÷ÈÀëŽHÆI®à\OçKuäI¹†ó(”—GWî ñ³¹¸æ2¨›‹ºÚû%¾ýÖ_3ºNú¯ëúì|ÕÅÖ‰}y lM’ZËîTÿ á[ðÐñ/ˆ9Àû ¸ón3 Mòd‘÷ döª^.Êñް›BâîNp>cëÏçÍzïíôÏ YÍ%ª¬·ãÏ-*9Ü­ÂãhéŒc¾dÈêú¼Ë,. VŠ÷çeÿ n/¡¼äãõâ=‹xGQKx”|¹bÌŠD@2Œ 8'Ž àúƒŽ+áDÒ&¡¨"Œ§–Žr22 Ç·s]ŸÄ‹«ð%ÚÄ<¹ä’(×{e›HÀqÁç©Ç½`üŽÚõK饚9ƒÄ±€< –úƒú~ çðñO#­Í%iKKlµ¦¾F)'Iê¬Î+Ç(`ñ¾£œdÈ’` ™ºcßéé^ÿ i¸”Û\ý¡æhÔB«aq¸}ãÀÆ:ÜWƒ|FÛÿ BŒÇÀeaŸ-sÊ€:úW½ÜÝÜ<%$µ†%CóDªÀí%IÈÏʤ…ôäñÞŒ÷‘a0“ôŽÚë¤nŸoW÷0«e¶y'Å»aΗ2r’# Û°A^ý9ÉQÔõ=ù5¬£Öü.(Þ’M$~V«=éSÄFN½®©ÔWô»ÿ þHžkR‹ìÏ+µµžöê;khÚI¤m¨‹Ôš–âÖçJ¾_Z•’6 a”Èô> ÕÉaÕ<%®£2n bQŠå\tÈõUÿ ø»þ‹k15‚ÃuCL$ݹp P1=Oøýs¯^u éEJ”–éêŸê½5ýzy›jÛ³á›Ûkÿ ÚOcn±ÛÏîW;boºz{ãžüVÆ¡a£a5½äÎÂks¸J@?1è¿{$䑐=k”øsÖ^nŒ¦)ÝåXÃíùN1ØõÚOJë–xF÷h¸ Œ"Ž?x䜚ü³ì¨c*Fœ¯i;7~ñí׫Ðó¥Ë»3Ãü púw ‰°<Á%»ñž ÿ P+Û^ ¾Ye£ŽCÄŒ„/>˜>•á¶Ìm~&&À>M[hÈÈÿ [Ž•íd…RO@3^Ç(ʽ*¶ÖQZyßþ 1Vº}Ñç?¼O4Rh6R€ª£í¡ûÙ a‚3ß·Õ ü=mRÍ/µ9¤‚0ÑC¼Iè:cŽsÛ¾™x£ÆÐ¬ªÍöˢ샒W$•€Å{¨ÀPG ÀÀàŸZìÍ1RÉ0´ðxEË9+Éÿ ^rEÕ—±Š„70l¼áË@û.' ¼¹Žz€N3úUÉ<3á×*?²¬‚ä†"Ùc=p íÛ'¡ª1ñ"økJ†HÒ'»Ÿ+ oÏN¬Ã9 dÙãÜדÏâÍ~æc+j·Jzâ7(£ðW]•晍?nê´º6åwéåç÷N•ZŠíž›¬|?Ðõ?Ñ-E…®³ÇV$~X¯/…õ x‘LˆÑÜÚÈ7¦pzãÜüë½ðÄ^õtÝYËÍ7ÉÖÕ8ÏUe# #€r=sU¾/é’E§jRC4mxNÝ´9†íuá»›V‘ ZI€­×cr1Ÿpzsøf»¨åV‹ìû`qËLÊIã?\~¼³áËC©êhªOîO»‘ÃmçÛçút×¢x“Z}?Üê#b-¤X7õ Äò gž zzbº3œm*qvs·M=íúéw}¿&Úª°^Ö×µÏ(ø‡â†Öµƒenñý†×åQáYûœ÷ÇLœôÎNk¡ð‡¼/µ¸n0æÉ0¬ƒ‚üîÉÆvŒw®Sáö”š¯‹-üÕVŠØÙ[$`(9cqƒÔ_@BëqûÙ`Ýæ­0;79È?w<ó |ÙÜkßÌ1±Ëã ¿ìÒ»ðlìï«ÓnªèèrP´NÏš&Žéö Ù¸÷æ°~-_O'‰`°!RÚÚÝ%]Ø%þbß1'¿ÿ X՝áOöÎŒ·‹¬+Åæ*ÛÛ™0¤ƒOÍÔ `u¯¦ÂaèÐÃÓ«‹¨Ô¥µœ¿¯ÉyÅÙ.oÔôŸ Úx&(STðݽ¦õ] ’ÒNóÁäÈùr3í·žÚ[™ƒ¼veÈ÷ÞIõÎGlqÎ=M|«gsªxÅI6 ]Z·Îªä,¨zŒŽÄ~#ØŠúFñiÉqc©éÐD>S딑 GñŽ1éÐ^+ Ëi;Ô„µVÕú»i¯ÈÒ-ZÍ]òܘ®ì` bÛÙ¥_/y(@÷qÐúg Ô÷W0.Ø› 6Ò© r>QƒŒ0+Èîzb¨É+I0TbNñ"$~)ÕÒ6Þ‹{0VÆ27œWWñcÄcX×íôûyKZéðªc'iQ¿¯LaWŠŸS\·Š“źʸ…ôÙÂí|öÀÇåV|!¤ÂGâÛ[[’ï 3OrÙËPY¹=Î1õ5öåTžÑè Ú64/üö?Zëžk}¬¶éào፾á}3“ü]8Éæ¿´n²Žš_6¾pœ)2?úWÓÚ¥¾¨iWúdŽq{*ª1rXŒd…m»‰äcô¯–dâ•ã‘Jº¬§¨#¨® §,df«8ÉÅßN¾hˆ;îÓ=7áùpën®É 6ûJžO2^œÐò JÖø¥²ã›Ò6Ü·‰!wbÍ‚¬O©»õ¬ÿ ƒP=Ä:â¤-&ÙŽ ` È9 r9íϧzë> XÅ7ƒ5X–krÑ¢L 7€ìw}ÑŸNHëŒüþ:2†á¼+u·á÷N/Û'Ðç~ߘô«ëh!ónRéeQ´6QÛÿ èEwëÅÒ|¸Yqó1uêyùzð8 ƒŠù¦Ò;¹ä6öi<'ü³„[íZhu½ ùÍ¡g‚>r¯׊îÌx}bñ2“­k꣧oø~›hTèóËWò4|ki"xßQ˜Ï6øÀLnß‚0 ¹Æ{±–¶Öe#¨27È@^Ìß.1N¾œyç€õ†ñeé·Õã†çQ°€=­Ì©ºB€Ø8<‚ÃSõ®ùcc>×Ú .Fr:žÝGæ=kÁâ,^!Fž ¬,àµ}%¶«îõ¹†"r²ƒGœüYÕd?aÑÍY®49PyU ÷þ!žxÅm|/‚ãNð˜¼PcûTÒ,¹/Ý=FkÏ|u¨¶«â녏{¤m¢]Û¾ïP>®XãÞ½iÓÁ¾ ‰'¬–6ß¼(„ï— í!úÙäzôë^–:œ¨å|,_¿&š×]uÓѵÛô4’j”bž§x‘Æ©ã›á,‚[Ô ÎÞ= ŒËæ ÀùYÁ?ŽïÚ¼?ÁªxºÕÛ,°1¸‘¿ÝäãØ¯v…@¤åq½ºã œàûââ·z8Xýˆþz~—û»™âµj=Ž â~ãáh@'h¼F#·Üp?ŸëQü-løvépx»cŸø…lxâÃûG·‰¶ø”L£©%y?¦úõÆü-Õ¶¥y`Òl7>q’2üA?•F}c‡jB:¸Jÿ +§¹¿¸Q÷°ív=VÑìu[Qml%R7a×IèTõéŽx¬ ?†š7 1†îã-ˆã’L¡lŽ0OÓ=ÅuˆpÇ•¼3ÛùÒ¶W/!|’wŽw^qÔ×Ïaó M8Q¨ãÑ?ëï0IEhÄa¸X•`a ?!ÐñùQ!Rä ÂžqŽžÝO`I0ÿ J“y|ñ!Îã@99>þ8–+éáu…!ù—ä ʰ<÷6’I®z ÅS„¾)Zþ_Öýµ×ËPåOwø÷þ*üïænÖùmØÝûþ¹=>¦½öî×Jh]¼ç&@§nTŒ6IT Àõ^Fxð7Å3!Ö·aÛ$þÿ ¹ã5îIo:ȪmËY[’8ÇӾlj*òû¢¥xõ¾¼ú•åk+\ð¯ HÚoŽl•Ûk,¯ ç²²cõÅ{²Z\ ´ìQ åpzŽ3Ôð}ÿ Jð¯XO¡øÎé€hÙ¥ûLdŒ`““ù6Gá^ÃáÝ^Ë[Ñb¾YåŒÊ»dŽ4 †2§,;ÿ CQÄ´¾°¨c–±”mºV{«ßÕýÄW\ÖŸ‘çŸ,çMRÆí“l-ƒn~ë©ÉÈê Ü?#Ž•¹ðãSÒ¥ÐWNíà½;ãž)™ÎSÈ9cóLj뵿Å«iÍk¨ió­¶X‚7÷ƒ€yãnyÏŽëÞ Öt`×À×V's$È9Ú:ä{wÆEk€«†Çàc—â$éÎ.éí~Ýëk}ÅAÆpörÑ¢‡Šl¡ÑüSs‹¨‰IÝ„óÀ×wñ&eºðf™pŒÆ9gŽTø£lñëÀçŽ NkÊUK0U’p ï^¡ãÈ¥´ø{£ÙHp`’ØåbqÏ©äó^Æ: Ž' ÊóM«õz+ß×ó5Ÿ»('¹­ð¦C„$˜Å¢_ºÈI?»^äã'ñêzž+ë€ñ-½»´}¡Ë*õ?.xÇ^1ŽMyǸ&“—L–îëöâ7…' bqéÎGé]˪â1$o²¸R8Ã`.q€}sÖ¾C9­8cêÆÞíïóòvÓòùœÕfÔÚéýu­èÖ·Ú Å‚_¤³ÜۺƑߝ”àרý:׃xPþÅÕî-/üØmnQìïGΊÙRqê=>¢½õnæ·r!—h`+’;ò3È<“Û©éšóŸx*÷V¹¸×tÈiˆßwiÔÿ |cŒñÏ®3Ö½̰‰Ë Qr©ö½®¼ÛoÑÙZÅÑ«O൯ýw8;k›ÿ x†;ˆJa;‘º9÷÷R+¡ñgŽí|Iáë{ôáo2ʲ9 029ÉÏLí\‰¿¸Ÿb˜ "Bv$£&#ßiê>=ªª©f  ’N ëí>¡N­XW­~5×úíø\‰»½Ï^ø(—wÖú¥¤2íŽÞXæÁ$ °eÈ888^nÝë²ñÝÔ^ ÖÚ9Q~Ëå7ï DC¶ÑµƒsËÇè9®Wáþƒ6‡£´·°2\Ý:ÈÑ?(#¨'$õèGJ¥ñW\ÿ ‰E¶—¸™g˜ÌÀ¹;Pv ú±ÎNs·ëŸ’–"Ž/:té+ûË]öJöÓM»ëø˜*‘•^Uý—êd|‰åñMæÔÝ‹23å™6æHùÛ‚ëüñ^…ñ1¢oêûÑEØ.õ7*ÅHtÎp{g<·Á«+¸c¿¿pÓ¾Æby=8É_ÄsÆk¬ñB\jÞÔì••Ë[9Píb‹Bヅ =9­3§ð§LšÛáÖšÆæXÌÞdÛP.0\ãïÛ0?™úJ¸™Ë ”•œº+=<µI£¦í¯õêt¬d‹T¬P=ËFêT>ÍØØ@Ï9<÷AQÌ×»Õ¡xùk",JÎæù±Éç$œŽŸZWH®¯"·UÌQ ’ÙÈ]ÅXg<ã ߨg3-Üqe€0¢¨*Œ$܃ ’Sû 8㎼_/e'+Ï–-èÓ¶¶Õíß[·ÙÙ½î쏗¼sk%§µxä‰â-pÒeÆCrú ôσžû=”šÅô(QW‚Õd\ƒæ. \àö¹¯F½°³½0M>‘gr÷q+œ¶NïºHO— ¤ ܥݭ”n·J|ÆP6Kµc=Isó}Ò çGš)a=—#vK›åoK§ßóٍ¤¶¿õú…ÄRÚ[Ësöټˏ•Ë ópw®qœŒ·Ø ùÇâ‹ý‡ãKèS&ÞvûD Aù‘É9 ŒîqÅ} $SnIV[]ѐ´Ó}ØÜ¾A Ü|½kÅþÓ|E Mu R¼.I¼¶däò‚ÃkÆ}ðy¹vc iUœZ…­Õõ»z¾÷¿n¦*j-É­/àœHã\y5 Û ß™ó0— äŸnzôã#Ô¯,†¥ÚeÔ÷ÜÅ´„“'c…<íÝ€<·SŠ¥k§Ã¢éÆÆÙna‚8–=«ʪ[Ÿ™°pNî02z“ÔÙ–K8.È’Þî(vƒ2®@ äÈûãçžxäÇf¯ˆu¹yUÕîýWšÙ|›ëÒ%Q^í[æ|éo5ZY•^{96ˆY‚§v*x>âº_|U¹Ö´©tûMÒÂ9PÇ#«£#€ éÉñ‘ƒÍz/‰´-į¹°dd,Б›p03ƒœ{ç9=+ Ûᧇ¬¦[‡‚ê婺¸#±ß=³ý¿•Õµjñ½HÙh›Û[§ÚýÊöô÷{˜?ô÷·Ô.u©–_%còcAÀ˜’ }0x9Î>žñÇáÍ9,ahï¦Ì2òÓ ñÛAäry$V²Nð ]=$Ž ‚#Ù‚1ƒƒødõMax‡ÂÖ^!±KkÛ‘ «“Çó²FN8+ëÎ{Ò¼oí§[«ÕMRoËeç×[_m/¦¦k.kôgŽxsSÓ´ý`êzªÜÜKo‰cPC9ÎY‰#§^üý9¹âïÞx£Ë·Ú`±‰‹¤;³–=ÏaôÕAð‚÷kêÁNBéÎælcõö®£Fð†ô2Ò¬]ßÂK$ÓÜ®•”/ÊHàã$ä ¸÷ëf¹Oµúâ“”’²ø­è´µþöjçNü÷üÌ¿ xNïFÒd»¼·h®îT9ŽAµÖ>qÁçÔœtïÒ»\ȶÎîcÞäîó3¶@#ÉIÎ ÔñW.<´’¥–ÑÑ€ÕšA‚ ;†qÓë‚2q ÒÂó$# Çí‡ !Ë}Õ9ÈÎÑÉã=;ŒÇÎuñ+ÉûÏ¥öíeÙ+$úíÜ娯'+êZH4ƒq¶FV‹gïŒ208ÆÌ)íб>M|÷âÍã¾"iì‹¥£Jd´™OÝç;sÈúr+ÜäˆË)DŒ¥šF°*3Õ”d {zÔwºQ¿·UžÉf†~>I+ŒqÔ`ð3œ“Ü×f]œTÁÔn4“ƒø’Ýßõ_«*5šzGCÊ,þ+ê1ò÷O¶¸cœºb2yÇ;cùÕ£ñh¬›áÑŠr¤ÝäNBk¥—á—†gxšX/쑘hŸ*Tçn =û㦠2|(ð¿e·ºÖ$ ýìŸ!'åΰyîî+×öœ=Y:²¦ÓÞ×iü’—ü -BK™£˜›âÆ¡&véðõ-ûÉY¹=Onj¹ø¯¯yf4·±T Pó`çœ7={×mÃ/ ¢˜ZÚòK…G½¥b„’G AãÜœ*í¯Ã¿ IoæI¦NU8‘RwÈã;·€ Û×ëÒ”1Y •£E»ÿ Oyto¢<£Áö·šï,䉧ûA¼sû»Nò}¹üE{ÜÖªò1’õÞr0â}ÎØ#>à/8ïéÎ~—áÍ#ñÎlí§³2f'h”?C÷YËdð:qëõÓ·‚ïeÄ© ÔÈØÜRL+žAÎ3¼g=åšó³Œt3 ÑQ¦ùRÙßE®¼±w_;þhš’Sirÿ ^ˆã¼iੇ|RòO„m°J/“$·l“ ÇÓ¿ÿ [ÑŠÆ“„†Õø>cFÆ6Ø1ƒ– àz7Ldòxäüwá‹ÝAXùO•Úý’é®ähm­ •NÀ±ÌTÈç ƒ‘I$pGž:‚ÄbêW¢®œ´|­¦­nÍ>¶ÖÏ¢§ÎÜ¢ºö¹•%ÄqL^öÛ KpNA<ã¡ …î==ª¸óffËF‡yÌcÉ ©ç$ð=ñÏ­YþÊ’Ú]—¥‚¬‚eDïÎH>Ÿ_ÌTP™a‰ch['çÆÜò7a‡?w°Ïn§âÎ5”’¨¹uÚÛ|´ÓÓc§{O—ü1•ªxsÃZ…ÊÏy¡Ã3¸Ë2Èé» ‘ƒÎ äžÜðA§cáOéúÛ4ý5-fŒï„ù¬ûô.Ç Üsž•Ò¾•wo<¶Ÿ"¬¡º|£ î2sÇ¡éE²ÉFѱrU°dÜ6œ¨ mc†Îxë׺Þ'0²¡Rr„{j¾í·è›µ÷)º·å–‹î2|I®Y¼ºÍË·–ÃÆà㍣'óÆxƒOÆÞ&>\lóÌxP Xc¸ì Sþ5§qà/ê>#žÞW¸if$\3 ® ûÄ“ùŽÕê¾ð<Ó‹H¶óÏ" å·( á‘€:ã†8Ï=+ꨬUA×ÃËÚT’ÑÞöù¥¢]{»ms¥F0\ÑÕ—ô}&ÛB´ƒOŽÚ+›xíÄÀ1 ,v± žIëíZ0ǧ™3 í2®0ทp9öÝÔž)ÓZËoq/Ú“‘L ²ŒmùŽÓ9§[Û#Ä‘\ÞB¬Çs [;à à«g‚2ôòªœÝV§»·¯/[uó½õÛï¾ /šÍ}öüÿ «=x»HŸÂÞ.™ ÌQùŸh´‘#a$‚'¡u<Š›Æ>2>+ƒLSiöwµFó1!eg`£åœ ÷ëÛö}Á¿ÛVÙêv $¬ƒ|,s÷z€ð΃¨x÷ÅD\ÜŒÞmåÔ„ ˆ o| :{ÇÓ¶–òÁn!´0Ål€, ƒ ( ÛŒŒ c¶rsšæ,4‹MÛOH!@¢ ÇŽ„`å²9ÝÃw;AÍt0®¤¡…¯ØÄ.Àì클ƒ‘ßñ5Í,Óëu-ÈÔc¢KÃÓ£òÖ̺U.õL¯0…%2È—"~x ‚[`có±nHàŽyàö™¥keˆìŒÛFç{(Ø©†`Jã#Žwg<“:ÚÉ;M ^\yhûX‡vB·÷zrF?§BÊÔ/s<ÐÈB)Û± ·ÍÔwç5Âã:så§e{mѤï«Òíh—]Wm4âí¿ùþW4bC3¶ª¾Ùr$ pw`àädzt!yŠI„hÂîàM)!edŒm'æ>Ç?wzºK­ìcŒ´¯Ìq6fp$)ãw¡éUl`µ»ARAˆÝÕgr:äŒgƒéé[Ôö±”iYs5Ýï«ÙG—K=þF’æMG«óÿ `ŠKɦuOQ!ÕåŒ/ÎGÞ`@ËqÕzdõâ«Ê/Ö(ƒK´%ŽbMü åÜŸö—>¤óŒŒV‘°„I¢Yž#™¥ùÏÊ@8 œgqöö5ª4vד[¬(q cò¨À!FGaÁõõ¯?§†¥ÏU½í¿WªZ$úyú½Žz×§Éþ?>Ã×È•6°{™™ŽÙ.$`­ÎUœ…çè ' ¤r$1Ø(y7 ðV<ž:È  ÁÎMw¾Â'Øb§øxb7gãО½óÉÊë²,i„Fȹ£§8ãä½k¹¥¦ê/ç{ïê驪2œ/«ü?¯Ô›ìñÜ$þeýœRIåŒg9Ác’zrrNO bÚi¢ ѺË/$,“ª¯Ýä;Œ× ´<ÛÑn³IvŸb™¥ nm–ÄŸ—nÝÀãŽ3ëÍG,.öó³˜Ù£¹u ÊÌrŠ[<±!@Æ:c9ÅZh ì’M5ÄìÌ-‚¼ëÉùqŽGì9¬á ;¨A-ž—évþÖ–^ON·Ô”ŸEý}ú×PO&e[]ÒG¸˜Ûp ƒÃà/Ë·8ûÀ€1ž@¿ÚB*²­¼ñì8@p™8Q“žÆH'8«I-%¸‚ F»“åó6°Uù|¶Ú¸ã ò^Äw¥ŠÖK–1ÜÝK,Žddlí²0PÀü“×ükG…¯U«·¶–´w¶ŽÍ¾©yÞú[Zös•¯Á[™6° ¨¼ÉVæq·,# ìãï‘×8îry®A››¨,ãc66»Ë´ã'æÉù?t}¢æH--Òá"›|ˆ¬[í  7¶ö#¸9«––‹$,+Ëqœ\Êø c€yê^ݸÄa°«™B-9%«×®‹V´w~vÜTéꢷþ¼ˆ%·¹• ’[xç•÷2gØS?6åÀÚ õ9É#š@÷bT¸º²C*3Bá¤òÎA9 =úU§Ó"2Ãlá0iÝIc‚2Î@%öç94ùô»'»HÄ¥Ô¾@à Tp£šíx:úÊ:5eºßMý×wµ›Ó_+šº3Ýyvÿ "ºÇ<ÂI>Õ 1G·Ë«È«É# àÈÇ øp Jv·šæDûE¿›†Ë’NFr2qŸ½ÇAÜšu•´éí#Ħ8£2”Ú2Ã/€[ÎTr;qŠz*ý’Îþ(≠;¡TÆâ›;ºÿ àçœk‘Þ­8¾Uª¾íé{^×IZéwÓkXÉûÑZo¯_øo×È¡¬ â–ÞR§2„‚Àœü½ùç® SVa†Âüª¼±D‘ŒísŸàä|ä2 æ[‹z”¯s{wn„ÆmáóCO+†GO8Ïeçåº`¯^¼ðG5f{Xžä,k‰<á y™¥voÆ éÛõëI=œ1‹éíÔÀÑ)R#;AÂncäŽ:tÏ#¶TkB.0Œ-ÖÞZÛgumß}fÎJÉ+#2êÔP£žùÈÅi¢%œ3P*Yƒò‚Aì“Ž2r:ƒÐúñi­RUQq‰H9!”={~¼ “JŽV¥»×²m.ÛߺiYl¾òk˜gL³·rT• ’…wHÁ6ä`–Î3ùÌ4Øe³†&òL‘•%clyîAÂäà0 žüç$[3uŘpNOÀÉ=† cï{rYK ååä~FÁ •a»"Lär1Ó¯2Äõæ<™C•.fÕ»è¥~½-¿g½Â4¡{[ør¨¶·Žõäx¥’l®qpwÇ»8ärF \cޏܯÓ-g‚yciÏÀ¾rÎwèØÈ#o°Á9ã5¢šfÔxÞæfGusÏÌJÿ µ×œ/LtãÅT7²¶w,l ɳ;”eúà·¨çîŒsÜgTÃS¦­^ '~‹®›¯+k÷ZÖd©Æ*Ó[Ü«%Œk0ŽXƒ”$k#Ȩ P2bv‘ƒŸáÇ™ÆÕb)m$É*8óLE‘8'–ÜN Úyàúô­+{uº±I'wvš4fÜr íì½=úuú sFlìV$‘ö†Hсù€$§ õ=½¸«Ž] :Ž+•¦ïmRþ½l´îÊT#nkiøÿ _ðÆT¶7Ò½ºÒ£Î¸d\ã8=yãŽÜäR{x]ZâÚé#¸r²#»ÎHÆ6õ ç® ÎFkr;sºÄ.&;só± Ç9êH÷ýSšÕ­tÐU¢-n­ Ì| vqœ„{gŒt§S.P‹’މ_[;m¥Þ­ZýRûÂX{+¥úü¼ú•-àÓ7!„G"“´‹žƒnrYXã¸îp éœ!Ó­oP̏tÑ (‰Þ¹é€sÓ#GLçÕšÑnJý¡!‘Tä#“ß?îýp}xÇ‚I¥Õn#·¸–y'qó@r[ Êô÷<ÔWÃÓ¢áN¥4ԝ’I&ݼ¬¬¼ÞºvéÆ FQV~_ÒüJÖÚt¥¦Xá3BÄP^%ÈÎW-×c¡ú©¤·Iþèk¥š?–UQåIR[’O 5x\ÉhÆI¶K4«2ùªŠŒ<¼óœçØ`u«‚Í.VHä € Ëgfx''9ÆI#±®Z8 sISºku¢ßÞ]úk»Jößl¡B.Ü»ÿ MWe °·Ž%šêɆ¼»Âù³´œ O¿cÐÓÄh©"ÛÜÏ.ÖV ’3nüÄmnq[ŒòznšÖ>J¬òˆæ…qýØP Ž:ä7^0yëWšÍ_79äoaÈ °#q0{ää×mœy”R{vÒÞ¶ÚÏe¥“ÚÆÐ¥Ì®—õýjR •íç›Ìb„+J yÜØÙ•Ç]¿Ôd þËOL²”9-Œ—õÃc'æÝלçÚ²ìejP“½ âù°¨†ðqòädЃÉäÖÜj÷PÇp“ÍšŠå«‘î <iWN­smª»¶vÓz5»ûì:Rs\Ðßôû×uÔÿÙ